-groups and elliptic representations for unitary groups

Author:
David Goldberg

Journal:
Proc. Amer. Math. Soc. **123** (1995), 1267-1276

MSC:
Primary 22E35; Secondary 22D30, 22E50

DOI:
https://doi.org/10.1090/S0002-9939-1995-1224616-6

MathSciNet review:
1224616

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We determine the reducibility and number of components of any representation of a quasi-split unitary group which is parabolically induced from a discrete series representation. The *R*-groups are computed explicitly, in terms of reducibility for maximal parabolics. This gives a description of the elliptic representations.

**[1]**James Arthur,*On elliptic tempered characters*, Acta Math.**171**(1993), no. 1, 73–138. MR**1237898**, https://doi.org/10.1007/BF02392767**[2]**I. N. Bernstein and A. V. Zelevinsky,*Induced representations of reductive 𝔭-adic groups. I*, Ann. Sci. École Norm. Sup. (4)**10**(1977), no. 4, 441–472. MR**0579172****[3]**David Goldberg,*𝑅-groups and elliptic representations for 𝑆𝐿_{𝑛}*, Pacific J. Math.**165**(1994), no. 1, 77–92. MR**1285565****[4]**-,*Reducibility of induced representations for**and*, Amer. J. Math.**484**(1994), 65-95.**[5]**David Goldberg,*Some results on reducibility for unitary groups and local Asai 𝐿-functions*, J. Reine Angew. Math.**448**(1994), 65–95. MR**1266747**, https://doi.org/10.1515/crll.1994.448.65**[6]**Harish-Chandra,*Harmonic analysis on reductive 𝑝-adic groups*, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 167–192. MR**0340486****[7]**Rebecca A. Herb,*Elliptic representations for 𝑆𝑝(2𝑛) and 𝑆𝑂(𝑛)*, Pacific J. Math.**161**(1993), no. 2, 347–358. MR**1242203****[8]**Hervé Jacquet,*Generic representations*, Non-commutative harmonic analysis (Actes Colloq., Marseille-Luminy, 1976), Springer, Berlin, 1977, pp. 91–101. Lecture Notes in Math., Vol. 587. MR**0499005****[9]**Charles David Keys,*On the decomposition of reducible principal series representations of 𝑝-adic Chevalley groups*, Pacific J. Math.**101**(1982), no. 2, 351–388. MR**675406****[10]**C. David Keys,*𝐿-indistinguishability and 𝑅-groups for quasisplit groups: unitary groups in even dimension*, Ann. Sci. École Norm. Sup. (4)**20**(1987), no. 1, 31–64. MR**892141****[11]**A. W. Knapp and E. M. Stein,*Irreducibility theorems for the principal series*, Conference on Harmonic Analysis (Univ. Maryland, College Park, Md., 1971), Springer, Berlin, 1972, pp. 197–214. Lecture Notes in Math., Vol. 266. MR**0422512****[12]**G. I. Ol'sanskii,*Intertwining operators and complementary series in the class of representations induced from parabolic subgroups of the genreal linear group over a locally compact division algebra*, Math. USSR-Sb**22**(1974), 217-254.**[13]**Freydoon Shahidi,*The notion of norm and the representation theory of orthogonal groups*, Invent. Math.**119**(1995), no. 1, 1–36. MR**1309970**, https://doi.org/10.1007/BF01245173**[14]**Freydoon Shahidi,*On certain 𝐿-functions*, Amer. J. Math.**103**(1981), no. 2, 297–355. MR**610479**, https://doi.org/10.2307/2374219**[15]**Allan J. Silberger,*The Knapp-Stein dimension theorem for 𝑝-adic groups*, Proc. Amer. Math. Soc.**68**(1978), no. 2, 243–246. MR**0492091**, https://doi.org/10.1090/S0002-9939-1978-0492091-5**[16]**Allan J. Silberger,*Introduction to harmonic analysis on reductive 𝑝-adic groups*, Mathematical Notes, vol. 23, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1979. Based on lectures by Harish-Chandra at the Institute for Advanced Study, 1971–1973. MR**544991**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
22E35,
22D30,
22E50

Retrieve articles in all journals with MSC: 22E35, 22D30, 22E50

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1224616-6

Article copyright:
© Copyright 1995
American Mathematical Society