Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$ R$-groups and elliptic representations for unitary groups


Author: David Goldberg
Journal: Proc. Amer. Math. Soc. 123 (1995), 1267-1276
MSC: Primary 22E35; Secondary 22D30, 22E50
DOI: https://doi.org/10.1090/S0002-9939-1995-1224616-6
MathSciNet review: 1224616
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We determine the reducibility and number of components of any representation of a quasi-split unitary group which is parabolically induced from a discrete series representation. The R-groups are computed explicitly, in terms of reducibility for maximal parabolics. This gives a description of the elliptic representations.


References [Enhancements On Off] (What's this?)

  • [1] J. Arthur, On elliptic temptered characters, Acta Math. 171 (1993), 73-138. MR 1237898 (94i:22038)
  • [2] I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive p-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), 441-472. MR 0579172 (58:28310)
  • [3] D. Goldberg, R-groups and elliptic representations for $ S{L_n}$, Pacific J. Math. 165 (1994), 77-92. MR 1285565 (95h:22020)
  • [4] -, Reducibility of induced representations for $ Sp(2n)$ and $ SO(n)$, Amer. J. Math. 484 (1994), 65-95.
  • [5] -, Some results on reducibility for unitary groups and local Asai L-functions, J. Reine Angew. Math. 448 (1994), 65-95. MR 1266747 (95g:22031)
  • [6] Harish-Chandra, Harmonic analysis on reductive p-adic groups, Proc. Sympos. Pure Math., vol. 26, Amer. Math. Soc., Providence, RI, 1973, pp. 167-192. MR 0340486 (49:5238)
  • [7] R. A. Herb, Elliptic representations for $ Sp(2n)$ and $ SO(n)$, Pacific J. Math. 161 (1993), 347-358. MR 1242203 (94i:22040)
  • [8] H. Jacquet, Generic representations, Non Commutative Harmonic Analysis, Lecture Notes in Math., vol. 587, Springer-Verlag, New York, Heidelberg, and Berlin, 1977, pp. 91-101. MR 0499005 (58:16985)
  • [9] C. D. Keys, On the decomposition of reducible principal series representations of p-adic Chevalley groups, Pacific J. Math. 101 (1982), 351-388. MR 675406 (84d:22032)
  • [10] -, L-indistinguishability and R-groups for quasi split groups: unitary groups in even dimension, Ann. Sci. École Norm. Sup. (4) 20 (1987), 31-64. MR 892141 (88m:22042)
  • [11] A. W. Knapp and E. M. Stein, Irreducibility theorems for the principal series, Conference on Harmonic Analysis, Lecture Notes in Math., vol. 266, Springer-Verlag, New York, Heidelberg, and Berlin, 1972, pp. 197-214. MR 0422512 (54:10499)
  • [12] G. I. Ol'sanskii, Intertwining operators and complementary series in the class of representations induced from parabolic subgroups of the genreal linear group over a locally compact division algebra, Math. USSR-Sb 22 (1974), 217-254.
  • [13] F. Shahidi, The notion of norm and the representation theory of orthogonal groups, Invent. Math, (to appear). MR 1309970 (96e:22034)
  • [14] -, On certain L-functions, Amer. J. Math. 103 (1981), 297-355. MR 610479 (82i:10030)
  • [15] A. J. Silberger, The Knapp-Stein dimension theorem for p-adic groups, Proc. Amer. Math. Soc. 68 (1978), 243-246; Correction, Proc. Amer. Math. Soc. 76 (1979), 169-170. MR 0492091 (58:11245)
  • [16] -, Introduction to harmonic anaysis on reductive p-adic groups, Math. Notes, vol. 23, Princeton Univ. Press, Princeton, NJ, 1979. MR 544991 (81m:22025)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22E35, 22D30, 22E50

Retrieve articles in all journals with MSC: 22E35, 22D30, 22E50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1224616-6
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society