ANALYTICITY OF SUBMARKOVIAN SEMIGROUPS

V. A. LISKEVICH AND M. A. PERELMUTER

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. Let A be a generator of a submarkovian semigroup in $L^2(M, d\mu)$. We investigate the domain of analyticity of $\exp(-tA)$ in $L^p(M, d\mu)$. The same problem for the generator perturbed by potential is considered.

1. Introduction

Let A be a nonnegative selfadjoint operator in $L^2(M, d\mu)$ such that $\exp(-tA)$ is a bounded semigroup in $L^p(M, d\mu)$ for $\forall p \in [q, q']$, $\frac{1}{q} + \frac{1}{q'} = 1$. Using Stein's interpolation theorem [St], one can show that $\exp(-tA)$ is an analytic semigroup in $L^p(M, d\mu)$, $p \in (q, q')$. Another approach to the proof of the analyticity is based on sectorialness estimates of the following type

$$|\text{Im} \langle A_p f, f \rangle_{L^2}^{|p-2|} | \leq c(p) \text{Re} \langle A_p f, f \rangle_{L^2}^{|p-2|}.$$

Inequality (1.1) implies that $\exp(-tA)$ has an analytic continuation as a semigroup in $L^p(M, d\mu)$ in the sector

$$\{ z \in \mathbb{C} : |\arg z| < \pi/2 - \arctan c(p) \}$$

(see, e.g., [G]). For second-order elliptic differential operators estimates (1.1) were proved by V. G. Maz'ja and P. E. Sobolevskii [MSO], A. Pazy [P], and other authors. But in mentioned results the constant $c(p)$ depends also on the ellipticity constant and the dimension of underground space. In several particular cases (including Laplace operator) D. Henry [H, §1.6], H. O. Fattorini [F], and D. Bakry [B] proved (1.1) with

$$c(p) = \frac{|p-2|}{2\sqrt{p-1}},$$

i.e., they obtained the constant which depends on p only. Recently N. Okazawa [O] and Yu. A. Semenov [Se] extended this result to the case of

$$A = \sum_{i,j} \partial_i a_{ij} \partial_j \quad \text{in} \ L^2(\Omega, dx), \ \Omega \subset \mathbb{R}^d.$$
D. Bakry and N. Okazawa have also pointed out that the analyticity sector of the corresponding semigroup, which can be obtained by using (1.1), is wider than that obtained by interpolation method.

The aim of this paper is to prove (1.1) with $c(p)$ from (1.2) for any submarkovian generator. In many respects this paper is complementary to [LPSe, LSe1]; we use the technique from these papers and extend some results. Here we do not give examples, but each example from [LPSe] may be considered in the spirit of this article. Note also that the operators considered in [F, H, MSo, P] are particular cases of submarkovian generators.

2. SOME PRELIMINARIES

In this section we give some notation, definitions, and lemmas which will be needed later on.

Let (M, μ) be a σ-finite measure space. We use the following notation:

$L^p \equiv L^p(M, \mu)$; $\| \cdot \|_p$ is the norm in L^p;

$\langle f, g \rangle \equiv \int_M f(x)\overline{g(x)} \, d\mu(x)$.

Definition 2.1. We say that A is a generator of a submarkovian semigroup (submarkovian generator) if the following conditions are satisfied:

(i) A is a nonnegative selfadjoint operator in L^2.
(ii) $\|e^{-tA}f\|_\infty \leq \|f\|_\infty$, $\forall f \in L^1 \cap L^\infty$.
(iii) $0 \leq f \in L^2 \Rightarrow e^{-tA}f \geq 0$ almost everywhere.

Let A be a selfadjoint operator in L^2. Suppose that

$\|e^{-tA}f\|_p \leq N e^{\omega t}\|f\|_p$, $\forall f \in L^1 \cap L^\infty$, $\forall p \in [p_0, p_0]'$, $p_0 \in [1, 2)$,

for some N, $\omega < \infty$ (primes always denote the dual exponent, i.e., $\frac{1}{p} + \frac{1}{p'} = 1$).

Assume that $T'_p = \exp(-tA_p)$ is the closure of $\exp(-tA) \upharpoonright [L^2 \cap L^p]$ in the space L^p, $p \in [1, \infty)$, and $T'_\infty = \exp(-tA_1)^*$ (adjoint operator). (Thus $A_2 \equiv A$.)

Lemma 2.2. For any $1 < p < \infty$ and $x, y \in \mathbb{C}$ the following inequality holds true:

$$|\operatorname{Im}(x - y)(x|p^{-2} - y|p^{-2})| \leq \frac{|p - 2|}{2\sqrt{p - 1}} \operatorname{Re}(x - y)(x|x|p^{-2} - y|y|p^{-2}).$$

Proof. Let $z = (x - y)(x|x|p^{-2} - y|y|p^{-2})$; then

$\operatorname{Im} z = (|x|p^{-2} - |y|p^{-2})\operatorname{Im}(x \bar{y}) = (|x|p^{-2} - |y|p^{-2})|x||y| \sin \omega$,

$$\operatorname{Re} z = |x|^p + |y|^p - (|x|p^{-2} + |y|p^{-2})\operatorname{Re}(x \bar{y})$$

$$= |x|^p + |y|^p - |x||y|(|x|p^{-2} + |y|p^{-2}) \cos \omega,$$

where $\omega = \arg(x \bar{y})$.

It is clear that $\operatorname{Re} z \geq 0$. Let $s = |x|$ and $t = |y|$; then we can rewrite (2.1) in the form

$$\sup_{s, t \in [0, \infty)} \sup_{\omega \in (-\pi, \pi)} F(s, t, \omega) \leq \frac{(p - 2)^2}{4(p - 1)},$$

where

$$F(s, t, \omega) = \frac{(sp^{-2} - tp^{-2})^2 s^2 t^2 (1 - \cos^2 \omega)}{(sp + tp - st(sp^{-2} + tp^{-2}) \cos \omega)^2}.$$
Optimizing $F(s, t, \omega)$ with respect to $\cos \omega$, i.e., setting
\[\cos \omega = \frac{st(s^{p-2} + t^{p-2})}{s^{p} + t^{p}}, \]
we obtain
\[(2.2) \quad F(s, t, \omega) \leq \frac{(s^{p-2} - t^{p-2})^2 s^2 t^2}{(s^2 - t^2)(s^{2p-2} - t^{2p-2})}. \]

Now using Schwarz's inequality we have
\[
(s^{p-2} - t^{p-2})^2 = (p - 2)^2(\int_t^s z^{p-3} \, dz)^2 = (p - 2)^2(\int_t^s z^{p-\frac{3}{2}} z^{-\frac{1}{2}} \, dz)^2
\]
\[
\leq (p - 2)^2 \int_t^s z^{2p-3} \, dz \int_t^s z^{-3} \, dz
\]
\[
= \frac{(p - 2)^2}{4(p - 1)} (s^{2p-2} - t^{2p-2})(s^{-2} - t^{-2}).
\]

Substituting this inequality into (2.2) yields
\[
F(s, t, \omega) \leq \frac{(p - 2)^2}{4(p - 1)}. \quad \square
\]

Lemma 2.3. For any $1 < p < \infty$ and $x, y \in \mathbb{C}$ the following inequality holds true:
\[
4\frac{p - 1}{p^2} |x|^\frac{p}{p-1} - |y|^\frac{p}{p-1} \geq \Re(x - y)(|x|^{p-2} - |y|^{p-2})
\]
\[
\leq a(p)|x|^\frac{p}{p-1} - |y|^\frac{p}{p-1},
\]
where
\[
a(p) = \sup_{u \in [0, 1]} \frac{(u^{1/p} + 1)(u^{1/p'} + 1)}{(u^{\frac{1}{p}} + 1)^2}, \quad \frac{1}{p} + \frac{1}{p'} = 1.
\]

Proof. Let $A = \Re(x - y)(|x|^{p-2} - |y|^{p-2})$, $B = |x|^\frac{p}{p-1} - |y|^\frac{p}{p-1}$. Then
\[
A = |x|^p + |y|^p - (|x|^{p-2} + |y|^{p-2})\Re(x \bar{y}),
\]
\[
B = |x|^p + |y|^p - 2|x|^\frac{p}{p-1}|y|^\frac{p}{p-1}\Re(x \bar{y}).
\]
Let us denote $s = |x|$, $t = |y|$, $\arg(x \bar{y}) = \omega$, and $\cos \omega \equiv \alpha \in [-1, 1]$. Then
\[
A = s^p + t^p - st(s^{p-2} + t^{p-2})\alpha, \quad B = s^p + t^p - 2s^\frac{p}{p-1} t^\frac{p}{p-1} \alpha.
\]
Inequality (2.3) takes the form
\[
4\frac{p - 1}{p^2} \leq \frac{A}{B} \leq a(p).
\]

Let
\[
G(s, t, \alpha) \equiv \frac{A}{B} = \frac{s^p + t^p - st(s^{p-2} + t^{p-2})\alpha}{s^p + t^p - 2s^\frac{p}{p-1} t^\frac{p}{p-1} \alpha}.
\]

Simple computations show that
\[
\frac{\partial G(s, t, \alpha)}{\partial \alpha} \leq 0.
\]
Thus using inclusion $\alpha \in [-1, 1]$, we have

$$G(s, t, 1) \leq \frac{A}{B} \leq G(s, t, -1).$$

By Schwarz's inequality we get

$$G(s, t, 1) = (s - t)(s^p - t^p)(s^q - t^q)^{-2}$$

$$= \frac{4(p - 1)}{p^2} \int_s^t dz \int_s^t z^{p-2} dz \geq \frac{4(p - 1)}{p^2}.$$

It remains only to note that

$$G(s, t, -1) = (s^p + t^p + st(s^p - t^p))(s^q + t^q)^{-2}$$

$$\leq \sup_{s, t \in [0, \infty)} (s^p + t^p + st(s^p - t^p))(s^q + t^q)^{-2}$$

$$= \sup_{u \in [0, 1]} \frac{(u^{1/p} + 1)(u^{1/p'} + 1)}{(u + 1)^2}. \quad \square$$

Remarks. 1. If x, y are real and of the same sign, then $a(p)$ may be changed

by 1. Indeed, in this case $\alpha = 1$ and the inequality $A \leq B$ is a consequence of

the Young inequality.

2. The function $a(p)$ has the following properties: $a(1) = 2; a(2) = 1; a(p) = a(p'), 1 \leq a(p) \leq 2$ for $1 < p < \infty; a(p)$ decreases on $(1, 2)$ and increases on $(2, \infty)$.

For real x, y the left-hand side of (2.3) is a particular case of the more
general inequality of the following type:

$$(x - y)(\phi(x) - \phi(y)) \geq \text{const}(\psi(x) - \psi(y))^2.$$

A variant of this inequality was proved in [LSel]. Here we give a different
version:

Lemma 2.4. Let $\phi : [a, \infty) \mapsto \mathbb{R}$ be a nondecreasing function and function ψ

be such that $(\psi')^2 \leq \phi'$; then for any $x, y \in [a, \infty)$

$$(x - y)(\phi(x) - \phi(y)) \geq (\psi(x) - \psi(y))^2.$$

Proof. Using Schwarz’s inequality we have

$$(\psi(x) - \psi(y))^2 = \left(\int_y^x \psi'(z) dz \right)^2 \leq \left(\int_y^x \psi'(z) dz \right) \cdot \left(\int_y^x \psi(z)^2 dz \right)$$

$$\leq \left(\int_y^x \psi'(z) dz \right) \cdot \left(\int_y^x \phi'(z) dz \right) = (x - y)(\phi(x) - \phi(y)). \quad \square$$

Remarks. 1. If $\phi(x) = x^{|p|} - 2$ and $\psi(x) = \frac{2}{p} x^{|p| - 1}$, we obtain the

left-hand side of (2.3).

2. Another example: if $\phi(x) = \ln(x)$ and $\psi(x) = 2\sqrt{x}$, $a = 0$ leads to the

inequality $(x - y)(\ln x - \ln y) \geq 4(\sqrt{x} - \sqrt{y})$, which together with (2.3) is useful

for abstraction of Moser’s proof of Harnack inequality for second-order elliptic

partial differential equations.

3. Analyticity of semigroups

In this section we give some consequences of the elementary inequalities from

the preceding section.
Theorem 3.1. Let A be a submarkovian generator. If $f \in \mathcal{D}(A_p)$ for some $p \in (1, +\infty)$, then the following inequality holds true:

\begin{equation}
\left| \text{Im} \langle A_p f, f f^{p-2} \rangle \right| \leq \frac{|p - 2|}{2\sqrt{p - 1}} \text{Re} \langle A_p f, f f^{p-2} \rangle.
\end{equation}

Proof. Let $T^t =: T^\prime_t$. For any measurable set $G \subset M$ we set $P(t, \cdot, G) = T^\prime_t \chi_G$, where χ is the characteristic function of G. $P(t, \cdot, G)$ is a finitely additive set function and $P(t, \cdot, M) \leq 1$.

For any simple function $f = \sum_{i=1}^k c_i \chi_{G_i}$, where $\{G_i\}$ are disjoint sets of finite measure, $c_i \in \mathbb{C}$, let us define

$$
\int_M P(t, \cdot, dy) f(y) = T^t f = \sum_{i=1}^k c_i T^t \chi_{G_i}.
$$

Then

$$
T^t f f^{p-2} = \sum_{i=1}^k c_i |c_i|^{p-2} T^t \chi_{G_i}.
$$

Let $\epsilon_t(u, v) = (1 - T^t)u, v).$ Because of selfadjointness of A and, consequently, of symmetry in (x, y) of the finite additive product-measure $d\mu_t(x, y) = P(t, x, dy) d\mu(x)$, the following equalities are valid:

$$
\langle T^t f, f f^{p-2} \rangle = \langle f, T^t f f^{p-2} \rangle = \frac{1}{2} \int d\mu(x) \int P(t, x, dy) (f(x)f(x) f(y)) \langle f(y) f(y) \rangle^{p-2} + f(y) f(x)) \rangle^{p-2} ;
$$

$$
\langle (T^t \chi_E f, f f^{p-2} \rangle = \langle \chi_E, T^t f f^{p} \rangle = \frac{1}{2} \int d\mu(x) \int P(t, x, dy) (|f(x)|^p + |f(y)|^p),
$$

where $E = \bigcup_{i=1}^k G_i$. Hence we obtain

$$
\epsilon_t(f, f f^{p-2}) = \frac{1}{2t} \int d\mu(x) \int P(t, x, dy) (f(x) - f(y))
$$

$$
\times (f(x)|f(x)|^{p-2} - f(y)|f(y)|^{p-2})
$$

$$
+ \frac{1}{t} ((1 - T^t \chi_E), |f|^p).
$$

Using Lemma 2.2, we have

\begin{equation}
\left| \text{Im} \epsilon_t(f, f f^{p-2}) \right| \leq \frac{|p - 2|}{2\sqrt{p - 1}} \text{Re} \epsilon_t(f, f f^{p-2}).
\end{equation}

Since the set of simple functions is dense in $L^q (1 \leq q < \infty)$, $f f^{p-2} \in L^p$, thus (3.2) holds true for all $f \in L^p$. If $f \in \mathcal{D}(A_p)$, letting $t \to 0$ in (3.2) yields (3.1). \qed

It is well known (see, e.g., [G, Theorem 1.5.9]) that (3.1) implies
Corollary 3.2. Let A be a submarkovian generator; then A_p ($1 < p < \infty$) generates a semigroup which is analytic in the sector

$$E_p = \left\{ z \in \mathbb{C} : |\arg z| < \frac{\pi}{2} - \arctan \frac{|p-2|}{2\sqrt{p-1}} \right\}$$

and $\|\exp(-zA_p)\|_{p,p} \leq 1$, $\forall z \in E_p$.

Remarks. 1. Stein’s interpolation theorem implies that A_p generates a semigroup on L^p which is analytic in the sector

$$S_p = \left\{ z \in \mathbb{C} : |\arg z| < \pi \left(1 - \frac{2}{p-1}\right) \right\}$$

(see [St]), but simple calculations show that $S_p \subset E_p$; thus Corollary 3.2 improves Stein’s result in the submarkovian case.

2. Corollary 3.2 does not give any information for the case $p = 1$. Nevertheless the analyticity of the semigroup generated by second-order elliptic operators holds true for quite general conditions on the coefficients [KoSe].

Theorem 3.3. Let A be a submarkovian generator. If $f \in \mathcal{D}(A_p)$ for some $p \in (1, +\infty)$ then $f|f|^{\frac{p}{2}-1} \equiv g_p \in \mathcal{D}(A^\frac{1}{p})$ and the following inequality holds true:

$$4\frac{p-1}{p^2} \|A^\frac{1}{p}g_p\|^2 \leq \text{Re}(A_pf, f|f|^{p-2}) \leq a(p)\|A^\frac{1}{p}g_p\|^2$$

where $a(p)$ is from (2.3) and if $f \geq 0$, then $a(p) = 1$.

The proof is similar to that of Theorem 3.1 and is based on Lemma 2.3.

Remarks. 1. The inequalities (3.3) for $f \geq 0$ are due to [S, V, CKS]. In the case $\text{Im } f = 0$ the generalization for the submarkovian generators acting in L^p was proved in [LSe1].

2. Generally, the constant $a(p)$ depends on operator A. For example, if A is an operator of multiplication by nonnegative measurable function from L^1, then $a(p)$ may be replaced by 1.

4. Perturbations

In this section we investigate the perturbation of a submarkovian generator A by a potential, e.g., by the operator of multiplication by a measurable function. Let V be a real-valued measurable function such that $V = V^+ - V^-$, $V^\pm \geq 0$.

We need the following

Definition 4.1. Let A be a submarkovian generator. Then we write $V^- \in PK_\beta(A)$ if $\mathcal{D}((V^-)^\frac{1}{2}) \supset \mathcal{D}(A^\frac{1}{2})$ and

$$\| (V^-)^\frac{1}{2}\varphi\|^2 \leq \beta\|A^\frac{1}{2}\varphi\|^2 + C(\beta)\|\varphi\|^2, \quad \forall \varphi \in \mathcal{D}(A^\frac{1}{2})$$

for some $\beta \in [0, 1)$, $C(\beta) \geq 0$.

If $\mathcal{D}((V^+)^\frac{1}{2}) \cap \mathcal{D}(A^\frac{1}{2})$ is dense in L^2 and $V^- \in PK_\beta(A)$, then the form-sum $H \equiv A + V$ is well defined (see [K, Chapter 6]).
As it was shown in [LSe1, LPSe], if $V^- \in PK_\beta(A)$, $p \in [t(\beta), t'(\beta)]$, where $t(\beta) = \frac{2}{1 + \sqrt{1 - \beta}}$ and $t'(\beta) = \frac{2}{1 - \sqrt{1 - \beta}}$, then

$$\| \exp(-t(A + V + C(\beta)))f \|_p \leq \|f\|_p, \quad \forall f \in L^2 \cap L^p.$$

Thus we can define the operator $H_p \equiv (A + V)_p$, where H_p is the generator of the semigroup which is the closure of $\exp(-tH) \upharpoonright [L^2 \cap L^p]$.

Theorem 4.2. Let $\beta \in [0, 1)$, $t(\beta) = \frac{2}{1 + \sqrt{1 - \beta}}$ and $t'(\beta) = \frac{2}{1 - \sqrt{1 - \beta}}$, $p \in (t(\beta), t'(\beta))$. Suppose that $\mathcal{D}((V^+)^{\frac{1}{2}}) \cap \mathcal{D}(A^{\frac{1}{2}})$ is dense in L^2 and $V^- \in PK_\beta(A)$. Let $C_p = (A + V)_p + C(\beta)$; then

$$\text{(4.1)} \quad \text{Im}<C_p f, f|f|^{p-2}> \leq s \text{ Re}<C_p f, f|f|^{p-2}> \quad \forall f \in \mathcal{D}(C_p),$$

where

$$s = \frac{|p - 2|}{2\sqrt{p - 1}} \frac{4(p - 1)}{4(p - 1) - \beta p^2}.$$

Hence e^{-tC_p} is the semigroup which is analytic in the sector $S = \{z \in \mathbb{C} : |\arg z| < \frac{\pi}{2} - \arctan s\}$ and $\|e^{-zC_p}\|_{p, p} \leq 1$, $\forall z \in S$.

Proof. Let $V_n^+ = \max\{V^+, n\}$, $V_m^- = \max\{V^-, m\}$. For any $f \in \mathcal{D}(C_p)$ we have $f = (C_p + 1)^{-1}u$, where $u \in L^p$. Let $f_{n, m} = (1 + C_p^{n, m})^{-1}u$, where $C_p^{n, m} = A_p + V_n^+ - V_m^- + C(\beta)$. Using the general approximation theorems (see [K, Chapter VI]) it is easy to check that $f_{n, m} \rightarrow f$ in L^2 as $n, m \rightarrow \infty$ and simple arguments based on H"{o}lder's inequality show that the same is true in L^p [LPSe].

Then $C_p^{n, m}(C_p^{n, m} + 1)^{-1}u \rightarrow C_p f$ (strongly in L^p) and $f_{n, m}|f_{n, m}|^{p-2} \rightarrow f|f|^{p-2}$ (strongly in L^p). Thus

$$\text{Im}<C_p f, f|f|^{p-2}> = \lim_{n, m \rightarrow \infty} \text{Im}<C_p^{n, m}f_{n, m}, f_{n, m}|f_{n, m}|^{p-2}>.$$

So in the proof of (4.1) we may assume that V is bounded and in all subsequent calculations we may assume also that all operators have the same domain. By Theorem 3.1

$$\text{Im}<C_p f, f|f|^{p-2}> \leq \frac{|p - 2|}{2\sqrt{p - 1}} \text{ Re}<A_p f, f|f|^{p-2}> \quad \forall f \in \mathcal{D}(A_p).$$

Using the definition of $PK_\beta(A)$ and Theorem 3.3 we obtain $\forall f \in \mathcal{D}(A_p)$

$$\text{Re}<(A_p + V^+ - V^- + C(\beta)) f, f|f|^{p-2}> \geq \left(1 - \beta \frac{p^2}{4(p - 1)}\right) \text{ Re}<A_p f, f|f|^{p-2}>.$$

Remark. More general classes of perturbations of submarkovian generators will be considered in [LSe2].

Acknowledgement

This work was completed while the second author was visiting the Department of Theoretical Mathematics at the Weizmann Institute. It is a pleasure to thank the Department for its support and hospitality.
REFERENCES

DEPARTMENT OF THEORETICAL MATHEMATICS, THE WEIZMANN INSTITUTE OF SCIENCE, REHOVOT 76100, ISRAEL
E-mail address: vitaliy@wisdom.weizmann.ac.il

RESEARCH INSTITUTE OF AUTOMATIZED SYSTEMS FOR PLANNING & CONTROL IN CONSTRUCTION, M.KRIVONOSA 2A, KIEV, 252180, UKRAINE