Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Integral closures of Noetherian integral domains as intersections


Author: Frederick W. Call
Journal: Proc. Amer. Math. Soc. 123 (1995), 1049-1052
MSC: Primary 13B22; Secondary 13G05
DOI: https://doi.org/10.1090/S0002-9939-1995-1227514-7
MathSciNet review: 1227514
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Three equivalent formulations of the property that the integral closure $ \overline A $ of a noetherian domain A can be written as $ \cap {\bar A_p}$ at all height-one primes p, are given in terms of PDE, $ {A^{(1)}}$, and bad minimal primes in completions. Examples with these properties include excellent domains and domains with a canonical module. Writing $ \overline A $ as an intersection of DVR's is also addressed.


References [Enhancements On Off] (What's this?)

  • [A] Y. Aoyama, Some basic results on canonical modules, J. Math. Kyoto Univ. 23 (1983), 85-94. MR 692731 (84i:13015)
  • [B] M. Brodmann, Finiteness of ideal transforms, J. Algebra 63 (1980), 162-185. MR 568570 (81g:13004)
  • [FR] D. Ferrand and M. Raynaud, Fibres formelles d'un anneau local noethérian, Ann. Sci. École Norm. Sup. (4) 3 (1970), 295-311. MR 0272779 (42:7660)
  • [F] R. Fossum, The divisor class group of a krull domain, Ergeb. Math. Grenzgeb. (3), vol. 74, Springer-Verlag, New York, 1983. MR 0382254 (52:3139)
  • [M] H. Matsumura, Commutative ring theory, Cambridge Univ. Press, Cambridge, 1986. MR 879273 (88h:13001)
  • [Mc] S. McAdam, Asymptotic prime divisors, Lecture Notes in Math., vol. 1023, Springer-Verlag, Berlin, 1983. MR 722609 (85f:13018)
  • [NI] J.-I. Nishimura, On ideal transforms of noetherian rings. I, J. Math. Kyoto Univ. 19 (1979), 41-46. MR 527394 (80f:13005)
  • [NII] -, On ideal transforms of noetherian rings. II, J. Math. Kyoto Univ. 20 (1980), 149-154. MR 564674 (82g:13005)
  • [S] R. Y. Sharp, Steps in commutative algebra, London Math. Soc. Stud. Texts, vol. 19, Cambridge Univ. Press, Cambridge, 1990. MR 1070568 (91j:13001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13B22, 13G05

Retrieve articles in all journals with MSC: 13B22, 13G05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1227514-7
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society