Asymptotic solution of a small parametered -D integral equation arising from a contact problem of elasticity based on the solution of a -D integral equation

Author:
Tian Quan Yun

Journal:
Proc. Amer. Math. Soc. **123** (1995), 1221-1227

MSC:
Primary 73T05

DOI:
https://doi.org/10.1090/S0002-9939-1995-1231307-4

MathSciNet review:
1231307

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Asymptotic solution of a 2-D integral equation of constant kernel with small parameter ,

**[1]**S. P. Timoshenko and J. N. Goodier,*Theory of elasticity*, 3rd ed., McGraw-Hill, New York, 1970, pp. 411-412.**[2]**Tian Quan Yun,*The exact integral equation of Hertz’s contact problem*, Appl. Math. Mech.**12**(1991), no. 2, 165–169 (Chinese, with English summary); English transl., Appl. Math. Mech. (English Ed.)**12**(1991), no. 2, 181–185. MR**1104095**, https://doi.org/10.1007/BF02016536**[3]**Gabor T. Herman,*Image reconstruction from projections*, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. The fundamentals of computerized tomography; Computer Science and Applied Mathematics. MR**630896****[4]**T. Q. Yun,*Integral equations and their applications in mechanics*, South China University of Technology Publishers, Guangzhou, 1990, p. 60. (Chinese)

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
73T05

Retrieve articles in all journals with MSC: 73T05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1231307-4

Keywords:
Hertz's contact problem,
Radon transform,
Abel integral equation,
asymptotic expansion

Article copyright:
© Copyright 1995
American Mathematical Society