TWO RESULTS ON THE 2-LOCAL EHP SPECTRAL SEQUENCE

M. G. BARRATT, F. COHEN, B. GRAY, M. MAHOWALD, AND W. RICHTER

(Communicated by Thomas Goodwillie)

Abstract. The E_2-term of the 2-local EHP spectral sequence is shown to be a $\mathbb{Z}/2$ module. 4 is the order of the identity map on the double loop space of the fiber $W(n)$ of the double suspension $E^2: S^{2n-1} \to \Omega^2 S^{2n+1}$.

1. Introduction

Restrict attention to the category of 2-local spaces. The EHP fibrations
\[\Omega^2 S^{2q+1} \xrightarrow{p} S^q \xrightarrow{E} \Omega S^{q+1} \xrightarrow{H} \Omega^2 S^{2q+1} \]
give a tower of fibrations converging to $Q(S^0)$, whose homotopy spectral sequence is the EHP spectral sequence \[E_1^{p,q} = \pi_{p+q}(S^{2q-1}) \Rightarrow \pi_p \], with differentials $d_r: E_r^{p,q} \to E_r^{p-r,q-1}$. James [6] proved that $2^{2n} \pi_*(S^{2n+1}) = 0$, by showing that $2\pi_*(S^{2n+1}) \subset \text{Im}(E)$ and $E(2\pi_*(S^{2n})) \subset \text{Im}(E^2)$. Thus the E_∞-term of the EHP spectral sequence is a $\mathbb{Z}/2$ module. James's work was translated to spaces [1, §5]:

Lemma 1.1. (1) $\Omega^2 S^{2n+1} \xrightarrow{\Omega H} \Omega^2 S^{4n+1} \xrightarrow{2} \Omega^2 S^{4n+1}$ is nullhomotopic.

(2) There exists a map ϕ making the following diagram homotopy commutative.

\[\Omega^2 S^{2n} \xrightarrow{2} \Omega^2 S^{2n} \xrightarrow{\Omega^2 E} \Omega^3 S^{2n+1} \]

\[\phi \]

\[\Omega S^{2n-1} \]

Mahowald [8] made the following conjecture, which will follow from Lemma 1.1 and an extensive amount of diagram chasing.
Theorem 1.2. The E_2-term of the EHP spectral sequence is a $\mathbb{Z}/2$ module. The 4^{th} power map of $\Omega^2W(n)$ is nullhomotopic, and $\pi_*(W(n))$ has exponent 4.

Let $d_1^+: \Omega^3S^{4n+1} \xrightarrow{\Omega p} \Omega^2S^{2n} \xrightarrow{H} \Omega^2S^{4n-1}$ and $d_1^-: \Omega^3S^{4n+1} \xrightarrow{\Omega p} \Omega^2S^{2n+1} \xrightarrow{H} \Omega^2S^{4n+1}$ denote the composites which realize the first EHP differential. Selick [11] improved the James exponent to $2^{2n-[n/2]}$. Cohen [1, §6] reformulated this as a compression of the H-space squaring map on Ω^4S^{4n+1} through Ω^2S^{4n-1}. Theorem 1.2 is implied by the following compression result, which extends their work.

Theorem 1.3. There exist maps $\mathcal{F}^+: \Omega^2S^{4n+1} \to \Omega^4S^{4n+1}$ and $\mathcal{F}^+: \Omega^2S^{4n-3} \to \Omega^2W(n)$ making the following diagrams homotopy commutative.

\[
\begin{array}{ccc}
\Omega^4S^{4n+1} & \xrightarrow{\Omega d_1^+} & \Omega^2S^{4n-1} \\
& \downarrow & \downarrow \\
\Omega^4S^{4n+1} & \xrightarrow{\Omega d_1^-} & \Omega^2S^{4n-3} \\
& \downarrow & \downarrow \\
\Omega^4S^{4n+1} & \xrightarrow{\Omega^2\partial} & \Omega^2W(n)
\end{array}
\]

2. Proofs

For any space X, we will denote by $2: \Omega X \to \Omega X$ the H-space squaring map. We will often use the following fact. For any map $f: \Omega X \to \Omega Y$, the composites $\Omega^2X \xrightarrow{\Omega f} \Omega^2X \xrightarrow{2} \Omega^2Y$ and $\Omega^2X \xrightarrow{2} \Omega^2Y \xrightarrow{\Omega f} \Omega^2Y$ are homotopic. We will use the following result about coliftings, which we state without proof.

Lemma 2.1. Let $F \xrightarrow{p} E \xrightarrow{\partial} B$ be a fibration, and let $f: B \to X$ be a map such that $f \cdot p: E \to X$ is nullhomotopic. Then Ωf factors through ∂, by a colifting $\mathcal{B}: F \to \Omega X$, which makes the following diagram commutes up to homotopy.

\[
\begin{array}{ccc}
\Omega B & \xrightarrow{\partial} & F \\
\downarrow & & \downarrow \\
\Omega f & \downarrow & \mathcal{B} \\
& \Omega X & \\
\end{array}
\]

Proof of Theorem 1.3. The EHP fibration $\Omega S^{2n} \xrightarrow{\Omega E} \Omega^2S^{2n+1} \xrightarrow{\Omega H} \Omega^2S^{4n+1}$ and Lemmas 1.1(1) and 2.1 give a colifting $\mathcal{B}: \Omega S^{2n} \to \Omega^3S^{4n+1}$ making the diagram

\[
\begin{array}{ccc}
\Omega^3S^{4n+1} & \xrightarrow{\Omega p} & \Omega^3S^{2n} \\
& \downarrow & \downarrow \\
\Omega^3S^{4n+1} & \xrightarrow{\mathcal{B}} & \Omega^3S^{2n}
\end{array}
\]

homotopy commutative. But $\mathcal{B} \cdot E: S^{2n-1} \to \Omega^3S^{4n+1}$ is nullhomotopic. By Lemma 2.1 and the EHP fibration $\Omega^2S^{4n-1} \xrightarrow{p} S^{2n-1} \xrightarrow{E} \Omega^2S^{2n}$, there exists
a colifting $\mathcal{F}^+: \Omega^2 S^{4n-1} \to \Omega^4 S^{4n+1}$ making the diagram

\[\begin{array}{ccc}
\Omega^2 S^{2n} & \xrightarrow{\Omega E} & \Omega^2 S^{4n-1} \\
\Omega \mathcal{F} & \downarrow & \downarrow \\
\Omega^4 S^{4n+1} & \xrightarrow{\mathcal{F}^+} & \Omega^4 S^{4n+1} \\
\end{array}\]

homotopy commutative. This proves the first part of Theorem 1.3.

By Lemma 1.1(2), the composite $\Omega^2 S^{2n} \xrightarrow{2-\Omega E \cdot \phi} \Omega^2 S^{2n} \xrightarrow{\Omega^2 E} \Omega^3 S^{2n+1}$ is nullhomotopic. Hence there exists a map $\psi: \Omega^2 S^{2n} \to \Omega^4 S^{4n+1}$ making the diagram

\[\begin{array}{ccc}
\Omega^2 S^{2n} & \xrightarrow{\Omega E} & \Omega^2 S^{4n-1} \\
| & & | \\
\Omega^2 S^{4n+1} & \xrightarrow{\Omega^2 \mathcal{P} E} & \Omega^2 S^{2n} & \xrightarrow{\Omega H} & \Omega^2 S^{4n-1} \\
\end{array}\]

commute up to homotopy, since (cf. [1, Proof of Lemma 4.1]) ΩH is linear.

We have an induced map of fibers $\beta: \Omega S^{2n-1} \to \Omega W(n)$, obtained by pulling back the outer trapezoid to the left, making the following diagram homotopy commutative.

\[\begin{array}{ccc}
\Omega^3 S^{4n-1} & \xrightarrow{\Omega \mathcal{P}} & \Omega^2 S^{2n-1} & \xrightarrow{\Omega E} & \Omega^2 S^{2n} & \xrightarrow{\Omega H} & \Omega^2 S^{4n-1} \\
\downarrow 2 & & \downarrow \beta & & \downarrow \psi & & \downarrow 2 \\
\Omega^3 S^{4n-3} & \xrightarrow{\Omega \mathcal{P} \mathcal{E}} & \Omega W(n) & \xrightarrow{\Omega \mathcal{E} \cdot \phi} & \Omega^4 S^{4n+1} & \xrightarrow{\Omega \mathcal{E}^+ \cdot \phi} & \Omega^2 S^{4n-1} \\
\end{array}\]

But $\beta \cdot \mathcal{F}: S^{2n-2} \to \Omega W(n)$ is nullhomotopic. The EHP fibration $\Omega^2 S^{4n-3} \xrightarrow{\mathcal{E} \cdot \phi} S^{2n-2} \xrightarrow{\mathcal{E} \cdot \phi} \Omega S^{2n-1}$ and Lemma 2.1 then yield the colifting $\mathcal{F}^-: \Omega^2 S^{4n-3} \to \Omega^2 W(n)$ making the following diagram homotopy commutative.

\[\begin{array}{ccc}
\Omega^2 S^{2n-1} & \xrightarrow{\Omega H} & \Omega^2 S^{4n-3} \\
\Omega \beta & & \mathcal{F}^- \\
\Omega^2 W(n) & & \\
\end{array}\]

Proof of Theorem 1.2. By Theorem 1.3, \(\text{Ker}(d^+_{1}) \subset \pi_{\ast}(S^{4n+1})\) is a $\mathbb{Z}/2$ module. Thus each $E^*_{2, 2n+1}$ is a $\mathbb{Z}/2$ module. By Theorem 1.3, any cycle $\alpha \in \text{Ker}(d^+_{1}) \subset \pi_{\ast}(S^{4n-1})$ satisfies $2\alpha \in \text{Im}(d^+_{1})$. Hence each $E^*_{2, 2n}$ is a $\mathbb{Z}/2$ module.

We have the fibration sequence $\Omega^2 S^{4n-1} \xrightarrow{\mathcal{E} \cdot \phi} W(n) \xrightarrow{\mathcal{E} \cdot \phi} \Omega^3 S^{4n+1} \xrightarrow{d^+_{1}} \Omega S^{4n-1}$.

By Theorem 1.3, the composite $\Omega W(n) \xrightarrow{\mathcal{E} \cdot \phi} \Omega^4 S^{4n+1} \xrightarrow{2} \Omega^4 S^{4n+1}$ is nullhomotopic. As indicated by the following homotopy commutative diagram, there exists a lifting $f: \Omega W(n) \to \Omega^3 S^{4n-1}$ of the H space squaring map of $\Omega W(n)$.
We have the following homotopy commutative diagrams.

\[\begin{array}{ccc}
\Omega^2 S^{4n-1} & \xrightarrow{p} & S^{2n-1} \\
\downarrow \vartheta & & \downarrow \iota \\
\Omega W(n) & & W(n) \\
\end{array} \]

\[\begin{array}{ccc}
\Omega^3 S^{4n-1} & \xrightarrow{d^{-}_1} & \Omega S^{4n-3} \\
\downarrow \vartheta & & \downarrow \iota \\
\Omega W(n) & & \Omega S^{2n-1} \\
\end{array} \]

By looping the above parallelogram and applying Lemma 1.1(1), we see that the composite $\Omega^2 W(n) \xrightarrow{\Omega \vartheta} \Omega^4 S^{4n-1} \xrightarrow{\Omega d^{-}_1} \Omega^2 S^{4n-3}$ is nullhomotopic. The composite $\Omega^2 W(n) \xrightarrow{\Omega \vartheta} \Omega^4 S^{4n-1} \xrightarrow{2} \Omega^4 S^{4n-1} \xrightarrow{\Omega^2 \vartheta} \Omega^2 W(n)$ is nullhomotopic, by Theorem 1.3. Hence $4: \Omega^2 W(n) \to \Omega^2 W(n)$, the 4\text{th} power map, is nullhomotopic. \(\square \)

3. Remarks

James [6] also showed that $2E(x) = 0$ for all $x \in \text{Ker}(E^2) \subset \pi_*(S^q)$. When $q = 2n - 1$, this gives evidence for Theorem 1.2, as it is implied by $4\pi_*(W(n)) = 0$. We used the case $q = 2n$ of James's result in an earlier version of our paper.

Richter [10] strengthened Theorem 1.3, showing that $2 \simeq -\Omega E^2 \cdot d^+_1$ on $\Omega^3 S^{4n+1}$ and $2 - \Omega^3(2i) \simeq -\Omega E^2 \cdot d^-_1$ on $\Omega^3 S^{4n-1}$, solving a conjecture of Gray [3] and Mahowald, which Harper [5] proved at odd primes. At an odd prime p, Cohen, Moore, and Neisendorfer [2] showed that the p\text{th} power map on $\Omega W(n)$ is nullhomotopic. Gray [4] showed that $W(n)$ deloops, essentially by delooping the map d^+_1. It was already known that $\pi_*(W(2))$ had exponent 4, by Cohen's [1, Theorem 19.1] splitting $\Omega^2 S^5(2) \simeq W(2) \times \Omega^2 S^3(3)$.

Mahowald [8] further conjectured that $(d^-_1)_* : \pi_*(S^{4n-1}) \to \pi_*(S^{4n-3})$. Note that James shows that $\text{Ker}(E) \subset \pi_*(S^{2n+1})$ is a $\mathbb{Z}/4$ module.
The conjecture implies that \(\text{Ker}(E) \) is a \(\mathbb{Z}/2 \) module. By [10], the conjecture also implies

Conjecture C2. For any element \(\alpha \in \pi_\ast(S^{4n-1}) \), \((2i) \cdot \alpha = 2\alpha \in \pi_\ast(S^{4n-1}) \).

One might wonder whether \(2 \simeq \Omega^k(2i) \) on \(\Omega^kS^{4n-1} \) for some \(k \). Note [1, §§11 and 12] that away from Arf invariant one or Hopf invariant one dimensions, \(k \) must be at least 3.

ACKNOWLEDGMENT

Thanks to Paul Burchard for the commutative diagram package, which uses \(\LaTeX \)-\TeX fonts.

REFERENCES

(M. G. Barratt, M. Mahowald, and W. Richter) DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS 60208-2730

Current address, W. Richter: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907

E-mail address, M. Mahowald: mark@math.nwu.edu

E-mail address, W. Richter: richter@math.purdue.edu

(F. Cohen) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ROCHESTER, ROCHESTER, NEW YORK 14627-0001

(B. Gray) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT CHICAGO CIRCLE, CHICAGO, ILLINOIS 60680-4348

E-mail address: brayton@math.nwu.edu