Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Holomorphic germs on Tsirelson's space


Authors: Jorge Mujica and Manuel Valdivia
Journal: Proc. Amer. Math. Soc. 123 (1995), 1379-1384
MSC: Primary 46G20; Secondary 46E50
DOI: https://doi.org/10.1090/S0002-9939-1995-1219730-5
MathSciNet review: 1219730
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that if K is an arbitrary compact subset of the Banach space constructed by Tsirelson, then the space $ \mathcal{H}(K)$ of all holomorphic germs on K, with its natural inductive limit topology, is totally reflexive.


References [Enhancements On Off] (What's this?)

  • [1] R. Alencar, On reflexivity and basis for $ \mathcal{P}{(^m}E)$, Proc. Roy. Irish Acad. Sect. A 85 (1985), 131-138. MR 845536 (87i:46101)
  • [2] R. Alencar, R. Aron, and S. Dineen, A reflexive space of holomorphic functions in infinitely many variables, Proc. Amer. Math. Soc. 90 (1984), 407-411. MR 728358 (85b:46050)
  • [3] R. Aron, C. Herves, and M. Valdivia, Weakly continuous mappings on Banach spaces, J. Funct. Anal. 52 (1983), 189-204. MR 707203 (84g:46066)
  • [4] R. Aron and J. Prolla, Polynomial approximation of differentiate functions on Banach spaces, J. Reine Angew. Math. 313 (1980), 195-216. MR 552473 (81c:41078)
  • [5] R. Aron and M. Schottenloher, Compact holomorphic mappings on Banach spaces and the approximation property, J. Funct. Anal. 21 (1976), 7-30. MR 0402504 (53:6323)
  • [6] K. Bierstedt and R. Meise, Nuclearity and the Schwartz property in the theory of holomorphic functions on metrizable locally convex spaces, Infinite Dimensional Holomorphy and Applications (M. Matos, ed.), North-Holland Math. Stud., vol. 12, North-Holland, Amsterdam, 1977, pp. 93-129. MR 0632064 (58:30236)
  • [7] K. Bierstedt and R. Meise, Aspects of inductive limits in spaces of germs of holomorphic functions on locally convex spaces and applications to a study of $ (\mathcal{H}(U),{\tau _w})$, Advances in Holomorphy (J. A. Barroso, ed.), North-Holland Math. Stud., vol. 34, North-Holland, Amsterdam, 1979, pp. 111-178. MR 520658 (81k:46052)
  • [8] C. Boyd, Preduals of the space of holomorphic functions on a Fréchet space, Ph.D. thesis, University College Dublin, 1992.
  • [9] A. M. Davie, The approximation problem for Banach spaces, Bull. London Math. Soc. 5 (1973), 261-266. MR 0338735 (49:3499)
  • [10] W. Davis, T. Figiel, W. Johnson, and A. Pelczynski, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311-327. MR 0355536 (50:8010)
  • [11] S. Dineen, Complex analysis in locally convex spaces, North-Holland Math. Stud., vol. 57, North-Holland, Amsterdam, 1981. MR 640093 (84b:46050)
  • [12] J. Farmer, Polynomial reflexivity in Banach spaces, preprint, 1992. MR 1286830 (95h:46021)
  • [13] H. Komatsu, Projective and injective limits of weakly compact sequences of locally convex spaces, J. Math. Soc. Japan 19 (1967), 366-383. MR 0217557 (36:646)
  • [14] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, I, Springer, Berlin, 1977. MR 0500056 (58:17766)
  • [15] J. Mujica, Spaces of germs of holomorphic functions, Studies in Analysis (G. C. Rota, ed.), Academic Press, New York, 1979, pp. 1-41. MR 546801 (81k:46054)
  • [16] -, Complex analysis in Banach spaces, North-Holland Math. Stud., vol. 120, North-Holland, Amsterdam, 1986. MR 842435 (88d:46084)
  • [17] -, Linearization of bounded holomorphic mappings on Banach spaces, Trans. Amer. Math. Soc. 324 (1991), 867-887. MR 1000146 (91h:46088)
  • [18] G. Pisier, Counterexamples to a conjecture of Grothendieck, Acta Math. 151 (1983), 181-208. MR 723009 (85m:46017)
  • [19] R. A. Ryan, Applications of topological tensor products to infinite dimensional holomorphy, Ph.D. thesis, Trinity College Dublin, 1980.
  • [20] B. Tsirelson, Not every Banach space contains an imbedding of $ {l_p}$ or $ {c_0}$, Functional Anal. Appl. 8 (1974), 138-141.
  • [21] M. Valdivia, A characterization of totally reflexive Fréchet spaces, Math. Z. 200 (1989), 327-346. MR 978594 (90a:46003)
  • [22] G. Willis, The compact approximation property does not imply the approximation property, Studia Math. 103 (1992), 99-108. MR 1184105 (93i:46035)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46G20, 46E50

Retrieve articles in all journals with MSC: 46G20, 46E50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1219730-5
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society