Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the compactness of strongly continuous semigroups and cosine functions of operators


Author: Hernán R. Henríquez
Journal: Proc. Amer. Math. Soc. 123 (1995), 1417-1424
MSC: Primary 47D03; Secondary 47B07, 47D09
DOI: https://doi.org/10.1090/S0002-9939-1995-1227517-2
MathSciNet review: 1227517
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we relate two notions of compactness for strongly continuous semigroups of linear operators and cosine functions of linear operators. Specifically, if T denotes a strongly continuous semigroup of linear operators defined on a Banach space X, we will show that T is compact if and only if the set $ \{ (T( \bullet )x:x \in X,\left\Vert x \right\Vert \leq 1\} $ is relatively compact in any space $ {L^p}([0,a]);X)$ for $ 1 \leq p < \infty $ and $ a > 0$. We establish similar results for $ {(T(t) - I)^n},n \in {\mathbf{N}}$, and for cosine and sine functions of operators.


References [Enhancements On Off] (What's this?)

  • [1] K. Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin, 1985. MR 787404 (86j:47001)
  • [2] H. O. Fattorini, Second order linear differential equations in Banach spaces, North-Holland, Amsterdam, 1985. MR 797071 (87b:34001)
  • [3] H. R. Henríquez, Uma propriedade compacidade para familias cosseno de operadores, Proc. 14$ ^\circ$ Colóquio Brasileiro de Matemática, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, Brasil, 1983, pp. 71-80.
  • [4] -, Una nota sobre la compacidad de funciones coseno de operadores, Revista Proyecciones 6 (1987), 35-46.
  • [5] -, Periodic solutions of quasi-linear partial functional differential equations with unbounded delay, Funkcial. Ekvac. (to appear). MR 1299869 (96a:34150)
  • [6] J. H. Lightbourne, Periodic solutions and perturbed semigroups of linear operators, Nonlinear System and Applications, Academic Press, New York, 1977, pp. 591-602. MR 0458263 (56:16466)
  • [7] C. M. Marie, Mesures et probabilités, Hermann, Paris, 1974. MR 0486378 (58:6125)
  • [8] R. Nagel, One parameter semigroups of positive operators, Lecture Notes in Math., vol. 1184, Springer-Verlag, Berlin, 1986. MR 839450 (88i:47022)
  • [9] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983. MR 710486 (85g:47061)
  • [10] A. E. Taylor, Introduction to functional analysis, Wiley, New York, 1958. MR 0098966 (20:5411)
  • [11] C. C. Travis and G. F. Webb, Second order differential equations in Banach space, Proc. Internat. Sympos. on Nonlinear Equations in Abstract Spaces, Academic Press, New York, 1987, pp. 331-361. MR 502551 (81j:34110)
  • [12] -, Compactness, regularity and uniform continuity properties of strongly continuous cosine families, Houston J. Math. 3 (1977), 555-567. MR 0500288 (58:17957)
  • [13] I. I. Vrabie, Compactness methods for nonlinear evolutions, Longman Sci. Tech., Essex, 1987. MR 932730 (90f:47101)
  • [14] L. W. Weis, A generalization of the Vidav-Jorgens perturbation theorem for semigroups and its application to transport theory, J. Math. Anal. Appl. 129 (1988), 6-23. MR 921374 (89b:47061)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47D03, 47B07, 47D09

Retrieve articles in all journals with MSC: 47D03, 47B07, 47D09


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1227517-2
Keywords: Semigroup of operators, cosine functions of operators, compact operators
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society