Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Nonseparability and uniform structures in locally compact groups


Authors: G. Hansel and J.-P. Troallic
Journal: Proc. Amer. Math. Soc. 123 (1995), 1613-1621
MSC: Primary 22D05; Secondary 54E15
DOI: https://doi.org/10.1090/S0002-9939-1995-1232139-3
MathSciNet review: 1232139
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let G be a locally compact topological group. We prove that if G is not a SIN-group, then the quotient Banach space $ {\mathcal{U}_L}(G)/\mathcal{U}(G)$ contains an isometric linear copy of $ {l^\infty }$. To get this result, we first establish an extension theorem for (bilaterally) uniformly continuous functions on G.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Berglund, H. D. Junghenn, and P. Milnes, Analysis on semigroups: Function spaces, compactifications, representations, Wiley, New York, 1989. MR 999922 (91b:43001)
  • [2] C. Chou, Weakly almost periodic functions and almost convergent functions on a group, Trans. Amer. Math. Soc. 206 (1975), 175-200. MR 0394062 (52:14868)
  • [3] -, Weakly almost periodic functions and Fourier-Stieljes algebras of locally compact groups, Trans. Amer. Math. Soc. 274 (1982), 141-157. MR 670924 (84a:43008)
  • [4] H. A. M. Dzinotyiweyi, Nonseparability of quotient spaces of function algebras on topological semigroups, Trans. Amer. Math. Soc. 272 (1982), 223-235. MR 656487 (84h:43016)
  • [5] -, Uniformly continuous and weakly almost periodic functions on some topological semigroups, Proc. Amer. Math. Soc. 114 (1992), 571-574. MR 1072336 (92e:22006)
  • [6] L. Gillman and M. Jerison, Rings of Continuous Functions, Univ. Ser. Higher Math., Van Nostrand Reinhold, Princeton, NJ, 1960. MR 0116199 (22:6994)
  • [7] G. Hansel and J. P. Troallic, Equicontinuity, uniform structures and countability in locally compact groups, Semigroup Forum 42 (1991), 167-173. MR 1083929 (92g:22010)
  • [8] E. Hewitt and K. A. Ross, Abstract harmonic analysis. I, Springer-Verlag, New York, 1963.
  • [9] G. L. Itzkowitz, Continuous measures, Baire category, and uniform continuity in topological groups, Pacific J. Math. 54 (1974), 115-125. MR 0372114 (51:8331)
  • [10] G. L. Itzkowitz, S. Rothman, H. Strassberg, and T. S. Wu, Characterization of equivalent uniformities in topological groups, Topology Appl. 47 (1992), 9-34. MR 1189990 (93k:54060)
  • [11] M. Katetov, On real-valued functions in topological spaces, Fund. Math. 38 (1951), 85-91. MR 0050264 (14:304a)
  • [12] -, Correction to "On real-valued functions in topological spaces", Fund. Math. 40 (1953), 203-205. MR 0060211 (15:640e)
  • [13] P. Milnes, Uniformity and uniformly continuous functions for locally compact groups, Proc. Amer. Math. Soc. 109 (1990), 567-570. MR 1023345 (90i:22006)
  • [14] V. G. Pestov, A test of balance of a locally compact group, Ukrainian Math. J. 40 (1988), 109-111. MR 936417 (89e:22006)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22D05, 54E15

Retrieve articles in all journals with MSC: 22D05, 54E15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1232139-3
Keywords: Locally compact groups, uniform structures, uniformly continuous functions
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society