Nonseparability and uniform structures in locally compact groups

Authors:
G. Hansel and J.-P. Troallic

Journal:
Proc. Amer. Math. Soc. **123** (1995), 1613-1621

MSC:
Primary 22D05; Secondary 54E15

DOI:
https://doi.org/10.1090/S0002-9939-1995-1232139-3

MathSciNet review:
1232139

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let *G* be a locally compact topological group. We prove that if *G* is not a SIN-group, then the quotient Banach space contains an isometric linear copy of . To get this result, we first establish an extension theorem for (bilaterally) uniformly continuous functions on *G*.

**[1]**J. F. Berglund, H. D. Junghenn, and P. Milnes,*Analysis on semigroups*:*Function spaces, compactifications, representations*, Wiley, New York, 1989. MR**999922 (91b:43001)****[2]**C. Chou,*Weakly almost periodic functions and almost convergent functions on a group*, Trans. Amer. Math. Soc.**206**(1975), 175-200. MR**0394062 (52:14868)****[3]**-,*Weakly almost periodic functions and Fourier-Stieljes algebras of locally compact groups*, Trans. Amer. Math. Soc.**274**(1982), 141-157. MR**670924 (84a:43008)****[4]**H. A. M. Dzinotyiweyi,*Nonseparability of quotient spaces of function algebras on topological semigroups*, Trans. Amer. Math. Soc.**272**(1982), 223-235. MR**656487 (84h:43016)****[5]**-,*Uniformly continuous and weakly almost periodic functions on some topological semigroups*, Proc. Amer. Math. Soc.**114**(1992), 571-574. MR**1072336 (92e:22006)****[6]**L. Gillman and M. Jerison,*Rings of Continuous Functions*, Univ. Ser. Higher Math., Van Nostrand Reinhold, Princeton, NJ, 1960. MR**0116199 (22:6994)****[7]**G. Hansel and J. P. Troallic,*Equicontinuity, uniform structures and countability in locally compact groups*, Semigroup Forum**42**(1991), 167-173. MR**1083929 (92g:22010)****[8]**E. Hewitt and K. A. Ross,*Abstract harmonic analysis*. I, Springer-Verlag, New York, 1963.**[9]**G. L. Itzkowitz,*Continuous measures, Baire category, and uniform continuity in topological groups*, Pacific J. Math.**54**(1974), 115-125. MR**0372114 (51:8331)****[10]**G. L. Itzkowitz, S. Rothman, H. Strassberg, and T. S. Wu,*Characterization of equivalent uniformities in topological groups*, Topology Appl.**47**(1992), 9-34. MR**1189990 (93k:54060)****[11]**M. Katetov,*On real-valued functions in topological spaces*, Fund. Math.**38**(1951), 85-91. MR**0050264 (14:304a)****[12]**-,*Correction to "On real-valued functions in topological spaces"*, Fund. Math.**40**(1953), 203-205. MR**0060211 (15:640e)****[13]**P. Milnes,*Uniformity and uniformly continuous functions for locally compact groups*, Proc. Amer. Math. Soc.**109**(1990), 567-570. MR**1023345 (90i:22006)****[14]**V. G. Pestov,*A test of balance of a locally compact group*, Ukrainian Math. J.**40**(1988), 109-111. MR**936417 (89e:22006)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
22D05,
54E15

Retrieve articles in all journals with MSC: 22D05, 54E15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1232139-3

Keywords:
Locally compact groups,
uniform structures,
uniformly continuous functions

Article copyright:
© Copyright 1995
American Mathematical Society