Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Gaussian estimates and holomorphy of semigroups

Author: El-Maati Ouhabaz
Journal: Proc. Amer. Math. Soc. 123 (1995), 1465-1474
MSC: Primary 47D06; Secondary 47F05, 47N20
MathSciNet review: 1232142
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that if a selfadjoint semigroup T on $ {L^2}(\Omega )$ satisfies a Gaussian estimate $ \vert T(t)f\vert \leq MG(bt)\vert f\vert,0 \leq t \leq 1,f \in {L^2}(\Omega )$ (where $ G = G{(t)_{t \geq 0}}$ is the Gaussian semigroup on $ {L^2}({R^N})$ and $ \Omega $ is an open set of $ {R^N}$), then T defines a holomorphic semigroup of angle $ \frac{\pi }{2}$ on $ {L^p}(\Omega )$ . We obtain by duality the same result on $ {C_0}(\Omega )$. Applications to uniformly elliptic operators and Schrödinger operators are given.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47D06, 47F05, 47N20

Retrieve articles in all journals with MSC: 47D06, 47F05, 47N20

Additional Information

PII: S 0002-9939(1995)1232142-3
Article copyright: © Copyright 1995 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia