Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A geometric approach to an equation of J. D'Alembert


Authors: A. Pràstaro and Th. M. Rassias
Journal: Proc. Amer. Math. Soc. 123 (1995), 1597-1606
MSC: Primary 58A15; Secondary 58G99
DOI: https://doi.org/10.1090/S0002-9939-1995-1232143-5
MathSciNet review: 1232143
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: By using a geometric framework of PDE's we prove that the set of solutions of the D'Alembert equation $ ( \ast )(\frac{{{\partial ^2}\log f}}{{\partial x\partial y}}) = 0$ is larger than the set of smooth functions of two variables $ f(x,y)$ of the form $ ( \ast\ast )f(x,y) = h(x) \bullet g(y)$. This agrees with a previous counterexample by Th. M. Rassias given to a statement by C. M. Stéphanos. More precisely, we have the following result.

Theorem. The set of 2-dimensional integral manifolds of PDE $ ( \ast )$ properly contains the ones representable by graphs of 2-jet-derivatives of functions $ f(x,y)$ expressed in the form $ ( \ast \ast )$.

A generalization of this result to functions of more than two variables is sketched also by considering the equation $ (\frac{{{\partial ^n}\log f}}{{\partial {x_1} \cdots \partial {x_n}}}) = 0$.


References [Enhancements On Off] (What's this?)

  • [1] M. Čadek and J. Šimša, Decomposable functions of several variables, Aequationes Math. 40 (1990), 8-25. MR 1055187 (91e:26020)
  • [2] -, Decomposition of smooth functions of two multidimensional variables, Czechoslovak Math. J. 41 (1991), 342-358. MR 1105450 (92k:58029)
  • [3] J. D'Alembert, Recherches sur la courbe que forme une corde tendue mise en vibration I-II, Hist. Acad. Berlin (1747), 214-249.
  • [4] H. Gauchaman and L. A. Rubel, Sums of products of functions of x times functions of y, Linear Algebra Appl. 125 (1989), 19-63. MR 1024482 (91c:26019)
  • [5] V. Guillemin and S. Sternberg, An algebraic model of transitive differential geometry, Bull. Amer. Math. Soc. 70 (1964), 16-28. MR 0170295 (30:533)
  • [6] H. Goldschmidt, Integrability criteria for systems of nonlinear partial differential equations, J. Differential Geom. 1 (1967), 269-307. MR 0226156 (37:1746)
  • [7] D. Hilbert, Mathematical problems, Lecture delivered before the International Congress of Mathematicians at Paris in 1900, Bull. Amer. Math. Soc. 8 (1902), 437-479. MR 1557926
  • [8] S. Krasil'shchik, V. Lychagin, and A. M. Vinogradov, Geometry of jet spaces and nonlinear partial differential equations, Gordon & Breach, London, 1986. MR 861121 (88m:58211)
  • [9] V. Lychagin, Geometric theory of singularities of solutions of nonlinear differential equations, J. Soviet Math. 51 (1990), 2735-2757.
  • [10] F. Neuman, Functions of two variables and matrices involving factorizations, C. R. Math. Rep. Acad. Sci. Canada 3 (1981), 7-11. MR 608675 (82e:26014)
  • [11] -, Factorizations of matrices and functions of two variables, Czechoslovak Math. J. 32 (1982), 582-588. MR 682133 (84d:15017)
  • [12] -, Finite sums of products of functions in single variables, Linear Algebra Appl. 134 (1990), 153-164. MR 1060018 (91h:26013)
  • [13] F. Neuman and Th. M. Rassias, Functions decomposable into finite sums of products, Constantin Carathéodory: An International Tribute, vol. II, World Scientific, Singapore, 1991, pp. 956-963. MR 1130873 (92k:26031)
  • [14] A. Prástaro, Quantum geometry of PDE's, Rep. Math. Phys. 30 (1991), 273-354.
  • [15] Th. M. Rassias, A criterion for a function to be represented as a sum of products of factors, Bull. Inst. Math. Acad. Sinica 14 (1986), 377-382. MR 885367 (88f:26010)
  • [16] -, Problem P 286, Aequationes Math. 38 (1989), 111-112.
  • [17] Th. M. Rassias and J. Šimša, Finite sums decompositions in mathematical analysis, Wiley, New York.
  • [18] J. Šimša, A note on certain functional determinants, Aequationes Math. 44 (1992), 35-41. MR 1165781 (93i:39005)
  • [19] -, The best $ {L^2}$-approximation by finite sums of functions with separable variables, Aequationes Math. 43 (1992), 248-263. MR 1158733 (93c:41045)
  • [20] -, Stability of a differential criterion for decomposable functions of two variables (to appear).
  • [21] C. M. Stéphanos, Sur une categorie d'équations fonctionelles, Rend. Circ. Mat. Palermo (2) 18 (1904), 360-362.
  • [22] -, Sur une categorie d'equations fonctionnelles, Math. Kongress, Heidelberg (1904), 200-201; (1905)10, 194.
  • [23] F. Treves, Topological vector spaces. Distributions and kernels, Academic Press, New York and London, 1967. MR 0225131 (37:726)
  • [24] A. M. Vinogradov, Geometry of nonlinear differential equations, J. Soviet. Math. 17 (1981), 1624-1649. MR 579929 (83f:58065)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58A15, 58G99

Retrieve articles in all journals with MSC: 58A15, 58G99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1232143-5
Keywords: Geometry of partial differential equations, singular solutions of PDE's
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society