Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On tree ideals


Authors: Martin Goldstern, Miroslav Repický, Saharon Shelah and Otmar Spinas
Journal: Proc. Amer. Math. Soc. 123 (1995), 1573-1581
MSC: Primary 03E05; Secondary 03E40
DOI: https://doi.org/10.1090/S0002-9939-1995-1233972-4
MathSciNet review: 1233972
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {l^0}$ and $ {m^0}$ be the ideals associated with Laver and Miller forcing, respectively. We show that $ {\mathbf{add}}({l^0}) < {\mathbf{cov}}({l^0})$ and $ {\mathbf{add}}({m^0}) < {\mathbf{cov}}({m^0})$ are consistent. We also show that both Laver and Miller forcing collapse the continuum to a cardinal $ \leq \mathfrak{h}$.


References [Enhancements On Off] (What's this?)

  • [BaJuSh] T. Bartoszynski, H. Judah, and S. Shelah, Cichoń's diagram, J. Symbolic Logic 58 (1993), 401-423. MR 1233917 (94m:03077)
  • [BaPeSi] B. Balcar, J. Pelant, and P. Simon, The space of ultrafilters on N covered by nowhere dense sets, Fund. Math. 110 (1980), 11-24. MR 600576 (82c:54003)
  • [BaLa] J. E. Baumgartner and R. Laver, Iterated perfect set forcing, Ann. Math. Logic 17 (1979), 271-288. MR 556894 (81a:03050)
  • [GoJoSp] M. Goldstern, M. Johnson, and O. Spinas, Towers on trees, Proc. Amer. Math. Soc. 122 (1994), 557-564. MR 1284459 (95i:03114)
  • [JuMiSh] H. Judah, A. Miller, and S. Shelah, Sacks forcing, Laver forcing and Martin's axiom, Arch. Math. Logic 31 (1992), 145-161. MR 1147737 (93e:03074)
  • [JuSh] H. Judah and S. Shelah, The Kunen-Miller chart, J. Symbolic Logic 55 (1990), 909-927. MR 1071305 (91g:03097)
  • [Ke] A. Kechris, A notion of smallness for subsets of the Baire space, Trans. Amer. Math. Soc. 229 (1977), 191-207. MR 0450070 (56:8369)
  • [La] R. Laver, On the consistency of Borel's conjecture, Acta Math. 137 (1976), 151-169. MR 0422027 (54:10019)
  • [Mi] A. Miller, Rational perfect set forcing, Contemp. Math. (J. E. Baumgartner, D. Martin, and S. Shelah, eds.), vol. 31, Amer. Math. Soc., Providence, RI, 1984, pp. 143-159. MR 763899 (86f:03084)
  • [Pl] S. Plewik, On completely Ramsey sets, Fund. Math. 127 (1986), 127-132. MR 882622 (88d:04005)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 03E05, 03E40

Retrieve articles in all journals with MSC: 03E05, 03E40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1233972-4
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society