Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A generalization of outer parallel sets of a convex set


Author: J. R. Sangwine-Yager
Journal: Proc. Amer. Math. Soc. 123 (1995), 1559-1564
MSC: Primary 52A39; Secondary 52A40
DOI: https://doi.org/10.1090/S0002-9939-1995-1233984-0
MathSciNet review: 1233984
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An outer parallel set is formed by adding outer normals of fixed length to the boundary points of a convex set. In this paper the length of the outer normals varies as a function of the direction. This construction yields a geometric interpretation of the dual quermassintegrals of Lutwak and bounds on certain mixed volumes. An inequality of Firey will follow from one of the mixed volume bounds.


References [Enhancements On Off] (What's this?)

  • [1] Ju. D. Burago and V. A. Zalgaller, Geometric inequalities, Springer, Berlin, 1988. MR 936419 (89b:52020)
  • [2] W. Firey, The mixed area of a convex body and its polar reciprocal, Israel J. Math 1 (1963), 201-202. MR 0163213 (29:516)
  • [3] M. Ghandehari, Polar duals of convex bodies, Proc. Amer. Math. Soc. 113 (1991), 799-808. MR 1057954 (92b:52015)
  • [4] E. Lutwak, Dual mixed volumes, Pacific J. Math. 58 (1975), 531-538. MR 0380631 (52:1528)
  • [5] -, Intersection bodies and dual mixed volumes, Adv. Math. 69 (1988), 232-261. MR 963487 (90a:52023)
  • [6] J. R. Sangwine-Yager, A representation of volume involving interior reach, Math. Ann. 298 (1994), 1-5. MR 1252814 (95a:52012)
  • [7] R. Schneider, Convex bodies: the Brunn-Minkowski theory, Cambridge Univ. Press, Cambridge, 1993. MR 1216521 (94d:52007)
  • [8] F. Steinhardt, On distance functions and on polar series of convex bodies, Ph.D. Thesis, Columbia Univ., 1951.
  • [9] W. Weil, Kinematic integral formulas for convex bodies, Contributions to Geometry (J. Tolke and J. M. Wills, eds.), Birkhäuser, Basel, 1979, pp. 60-76. MR 568494 (81f:52009)
  • [10] -, Zufällige Berührung konvexer Körper durch q-dimensionale Eben, Resultate Math. 4 (1981), 84-101. MR 625116 (83b:52005)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 52A39, 52A40

Retrieve articles in all journals with MSC: 52A39, 52A40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1233984-0
Keywords: Brush set, mixed volume, outer parallel set, polar dual, quermassintegral
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society