On the solutions of the equation in a finite field

Authors:
Wen Fong Ke and Hubert Kiechle

Journal:
Proc. Amer. Math. Soc. **123** (1995), 1331-1339

MSC:
Primary 11D79; Secondary 11T30

DOI:
https://doi.org/10.1090/S0002-9939-1995-1234628-4

MathSciNet review:
1234628

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An explicit formula for the number of solutions of the equation in the title is given when a certain condition, depending only on *m* and the characteristic of the field, holds.

**[1]**James R. Clay,*Circular block designs from planar near-rings*, Combinatorics ’86 (Trento, 1986) Ann. Discrete Math., vol. 37, North-Holland, Amsterdam, 1988, pp. 95–105. MR**931309**, https://doi.org/10.1016/S0167-5060(08)70229-2**[2]**James R. Clay,*Nearrings*, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1992. Geneses and applications. MR**1206901****[3]**James R. Clay and Hubert Kiechle,*Linear codes from planar nearrings and Möbius planes*, Algebras Groups Geom.**10**(1993), no. 4, 333–344. MR**1250686****[4]**L. E. Dickson,*Cyclotomy, Higher Congruences, and Waring’s Problem*, Amer. J. Math.**57**(1935), no. 2, 391–424. MR**1507083**, https://doi.org/10.2307/2371217**[5]**-,*Congruences involving only e-th powers*, Acta Arith.**1**(1936), 161-167.**[6]**Olin B. Faircloth,*On the number of solutions of some general types of equations in a finite field*, Canadian J. Math.**4**(1952), 343–351. MR**0047694****[7]**L. K. Hua and H. S. Vandiver,*Characters over certain types of rings with applications to the theory of equations in a finite field*, Proc. Nat. Acad. Sci. U.S.A.**35**(1949), 94–99. MR**0028895****[8]**Loo-Keng Hua and H. S. Vandiver,*On the number of solutions of some trinomial equations in a finite field*, Proc. Nat. Acad. Sci. U. S. A.**35**(1949), 477–481. MR**0032679****[9]**Kenneth Ireland and Michael Rosen,*A classical introduction to modern number theory*, 2nd ed., Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New York, 1990. MR**1070716****[10]**J.-R. Joly,*Équations et variétés algébriques sur un corps fini*, Enseign. Math. (2)**19**(1973), 1-117.**[11]**W.-F. Ke,*Structures of circular planar nearings*, Ph.D. dissertaton, Univ. Arizona, Tucson, 1992.**[12]**W.-F. Ke and H. Kiechle,*Combinatorial properties of ring generated circular planar nearings*(submitted).**[13]**D. H. Lehmer,*The number of solutions of a certain congruence involving the sum of like powers*, Utilitas Math.**39**(1991), 65–89. MR**1119764****[14]**Howard H. Mitchell,*On the congruence 𝑐𝑥^{𝜆}+1≡𝑑𝑦^{𝜆} in a Galois field*, Ann. of Math. (2)**18**(1917), no. 3, 120–131. MR**1503593**, https://doi.org/10.2307/2007117**[15]**M. C. Modisett,*A characterization of the circularity of certain balanced incomplete block designs*, Ph.D. dissertation, Univ. Arizona, Tucson, 1988.**[16]**Matthew Clayton Modisett,*A characterization of the circularity of balanced incomplete block designs*, Utilitas Math.**35**(1989), 83–94. MR**992392****[17]**Qi Sun,*The diagonal equation over a finite field 𝐹_{𝑝}*, Sichuan Daxue Xuebao**26**(1989), no. 2, 159–162 (Chinese, with English summary). MR**1017018****[18]**André Weil,*Numbers of solutions of equations in finite fields*, Bull. Amer. Math. Soc.**55**(1949), 497–508. MR**0029393**, https://doi.org/10.1090/S0002-9904-1949-09219-4**[19]**Jacques Wolfmann,*The number of solutions of certain diagonal equations over finite fields*, J. Number Theory**42**(1992), no. 3, 247–257. MR**1189504**, https://doi.org/10.1016/0022-314X(92)90091-3

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
11D79,
11T30

Retrieve articles in all journals with MSC: 11D79, 11T30

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1234628-4

Article copyright:
© Copyright 1995
American Mathematical Society