Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the solutions of the equation $ x\sp m+y\sp m-z\sp m=1$ in a finite field


Authors: Wen Fong Ke and Hubert Kiechle
Journal: Proc. Amer. Math. Soc. 123 (1995), 1331-1339
MSC: Primary 11D79; Secondary 11T30
DOI: https://doi.org/10.1090/S0002-9939-1995-1234628-4
MathSciNet review: 1234628
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An explicit formula for the number of solutions of the equation in the title is given when a certain condition, depending only on m and the characteristic of the field, holds.


References [Enhancements On Off] (What's this?)

  • [1] J. R. Clay, Circular block designs from planar near rings, Ann. Discrete Math. 37 (1988), 95-106. MR 931309 (89g:05019)
  • [2] -, Nearrings: geneses and applications, Oxford Univ. Press, Oxford, 1992. MR 1206901 (94b:16001)
  • [3] J. R. Clay and H. Kiechle, Linear codes from planar near rings and Möbius planes, Algebras Groups Geom. 10 (1993), 333-344. MR 1250686 (94k:51006)
  • [4] L. E. Dickson, Cyclotomy, higher congruences, and Waring's problem, Amer. J. Math. 57 (1935), 391-424. MR 1507083
  • [5] -, Congruences involving only e-th powers, Acta Arith. 1 (1936), 161-167.
  • [6] O. B. Faircloth, On the number of solutions of some general types of equations in a finite field, Canad. J. Math. 4 (1952), 343-351. MR 0047694 (13:915d)
  • [7] L.-K. Hua and H. S. Vandiver, Characters over certain types of rings with applications to the theory of equations in a finite field, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 94-99. MR 0028895 (10:515c)
  • [8] -, On the number of solutions of some trinomial equations in a finite field, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 477-481. MR 0032679 (11:329g)
  • [9] K. F. Ireland and M. I. Rosen, A classical introduction to modern number theory, second ed., Springer-Verlag, Berlin, Heidelberg, and New York, 1990. MR 1070716 (92e:11001)
  • [10] J.-R. Joly, Équations et variétés algébriques sur un corps fini, Enseign. Math. (2) 19 (1973), 1-117.
  • [11] W.-F. Ke, Structures of circular planar nearings, Ph.D. dissertaton, Univ. Arizona, Tucson, 1992.
  • [12] W.-F. Ke and H. Kiechle, Combinatorial properties of ring generated circular planar nearings (submitted).
  • [13] D. H. Lehmer, The number of solutions of a certain congruence involving the sum of like powers, Utilitas Math. 39 (1991), 65-89. MR 1119764 (92f:11005)
  • [14] H. H. Mitchell, On the congruence $ c{x^\lambda } + 1 \equiv d {y^\lambda }$ in a Galois field, Ann. of Math. (2) 18 (1917), 120-131. MR 1503593
  • [15] M. C. Modisett, A characterization of the circularity of certain balanced incomplete block designs, Ph.D. dissertation, Univ. Arizona, Tucson, 1988.
  • [16] -, A characterizatin of the circularity of balanced incomplete block designs, Utilitas Math. 35 (1989), 83-94. MR 992392 (90c:05028)
  • [17] Q. Sun, The diagonal equation over a finite field $ {F_p}$, Sichuan Daxue Xuebao 26 (1989), 159-162. (Chinese) MR 1017018 (90i:11145)
  • [18] A. Weil, Number of solutions of equations in a finite field, Bull. Amer. Math. Soc. 55 (1949), 497-508. MR 0029393 (10:592e)
  • [19] J. Wolfmann, The number of solutions of certain diagonal equations over finite fields, J. Number Theory 42 (1992), 247-257. MR 1189504 (94j:11055)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11D79, 11T30

Retrieve articles in all journals with MSC: 11D79, 11T30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1234628-4
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society