AN ESTIMATION OF SINGULAR VALUES
OF CONVOLUTION OPERATORS

MILUTIN R. DOSTANIC

(Communicated by Palle E. T. Jorgensen)

Abstract. In this paper we determine the asymptotic order of singular values
of convolution operators \(\int_0^x k(x - y) \, dy \), where \(k(x) = x^{\alpha-1} L(1/x) \) (0 < \(\alpha < 1/2 \)) and \(L \) is a slowly varying function from some class.

1. Introduction

Let \(\mathscr{H} \) be a separable Hilbert space over \(\mathbb{C} \) and \(A \) be a compact operator. The singular values of \(A \) \((s_n(A)) \) are the eigenvalues of the operator \((A^*A)^{1/2} \) (or \((AA^*)^{1/2} \)).

V. Faber and G. M. Wing \[3, 4\] have found an upper bound on the singular values of fractional integral operators and of some other similar operators.

In \[2\] an exact asymptotic of the singular values of the fractional integral operator \(J^\alpha = \frac{1}{\Gamma(\alpha)} \int_0^x k(x - y)^{\alpha-1} \, dy \) is found. In this paper we find the asymptotic order of the singular values of the operator \(\int_0^x k(x - y) \, dy \) acting on \(\mathscr{H} = L^2(0, 1) \) whose kernel has power singularity and singularity arising from a slowly varying function \(L \) in the point \(x = 0 \). In what follows for given sequences \(\{a_n\}, \{b_n\} \) \((a_n > 0, b_n > 0) \) we write \(a_n \asymp b_n \) if there exist constants \(c_1, c_2 > 0 \) such that \(c_1 \leq a_n/b_n \leq c_2 \) for all \(n \in \mathbb{N} \). By \(\int_a^b m(x, y) \, dy \) we denote the integral operator on \(L^2(a, b) \) with the kernel \(m(x, y) \).

2. Main result

Let \(L \in C^1[1, \infty) \) be a nondecreasing function on \([1, \infty) \), let

\[
\lim_{x \to +\infty} xL'(x)/L(x) = 0,
\]

and let \(x \mapsto xL'(x)/L(x) \) be a nonincreasing function for \(x \) large enough. Define the operator \(A: L^2(0, 1) \to L^2(0, 1) \) by

\[
Af(x) = \int_0^x k(x - y)f(y) \, dy
\]

Received by the editors July 2, 1993.
1991 Mathematics Subject Classification. Primary 47A70.
Key words and phrases. Singular values, convolution operators, slowly varying function.
where
\[k(x) = x^{a-1}L \left(\frac{1}{x} \right) \quad (\alpha > 0). \]

Theorem 1. If 0 < \(\alpha < 1/2 \), then \(s_n(A) \propto L(n)/n^\alpha \).

Proof. Case A: \(L \) is not a bounded function. Then \(\lim_{x \to +\infty} L(x) = +\infty \).

Observe that if we smoothly extend \(L \) from \([1, \infty)\) to \([0, \infty)\) the new operator \(A \) has the same singular values as the old one (because it acts on \(\mathcal{H} = L^2(0, 1) \)). Because of that we can assume \(L \in C^{1}[0, \infty) \) and that \(L \) is a linear function on \([0, 1]\). Without loss of generality we can assume that \(L > 0 \) on \([0, \infty)\) (because \(s_n(I^\alpha) \propto 1/n^\alpha \) [2]). Let \(a > 1 \) be a fixed number and let

\[L_a(x) = \begin{cases} L(x), & x \geq a, \\ L'(a)x + L(a) - aL'(a), & 0 < x < a. \end{cases} \]

Let \(B \) and \(B_a \) be linear operators on \(L^2(0, 1) \) defined by

\[Bf(x) = \int_0^1 |x-y|^{\alpha-1}L \left(\frac{1}{|x-y|} \right) f(y) \, dy, \]
\[B_a f(x) = \int_0^1 |x-y|^{\alpha-1}L_a \left(\frac{1}{|x-y|} \right) f(y) \, dy. \]

Before the proof of Theorem 1 we give the following lemma.

Lemma 1. If 0 < \(\alpha < 1/2 \) and \(a \) is large enough, then

\[\lim_{n \to \infty} \frac{s_n(B)}{s_n(B_a)} = 1. \]

Proof. Let \(P: L^2(0, 1) \to L^2(0, 1) \) be a linear operator defined by \(Pf(x) = \chi[0,1/a](x)f(x) \) and \(Q = I - P \). (Here \(\chi[a,b] \) is the characteristic function of \([a,b]\).) Then

\[B_a = (P + Q)B(P + Q) = PB_aP + QB_aP + PB_aQ + QB_aQ \]

and

\[B = (P + Q)B(P + Q) = PBP + QBP + PBJQ + QBQ. \]

Since \(L_a(1/x) = L(1/x) \) for \(0 < x \leq 1/a \), we obtain \(PB_aP = PBP \) and

\[B = B_a + Q(B - B_a)P + P(B - B_a)Q + Q(B - B_a)Q. \]

From the definition of \(L_a \) it follows that \(Q(B - B_a)P \) and \(Q(B - B_a)Q \) are Hilbert Schmidt operators and hence

\[s_n(Q(B - B_a)P + P(B - B_a)Q + Q(B - B_a)Q) = \sigma(n^{-1/2}) = \sigma \left(\frac{L(n)}{n^\alpha} \right) \quad (0 < \alpha < \frac{1}{2}) \]

If we show that

\[\lim_{n \to \infty} \frac{n^\alpha}{L(n)} s_n(B_a) = c_0 \neq 0, \]
then from (2), (3), (4), and the Ky Fan Theorem [5] follows (1). Now we prove (4) (with \(c_0 = \pi^{-\alpha}\Gamma(\alpha)\cos(\alpha\pi/2) \)) if \(0 < \alpha < 1/2 \) and \(a \) is large enough.

Consider the operator \(B'_a : L^2(-1, 1) \rightarrow L^2(-1, 1) \) defined by

\[
B'_a f(x) = \int_{-1}^{1} k_a(|x-y|) f(y) \, dy
\]

where

\[
k_a(t) = t^{\alpha-1} L_a \left(\frac{1}{t} \right) \quad (t > 0).
\]

Let

\[
K_a(\xi) = \int \epsilon^{i\xi} k_a(|t|) \, dt
\]

and

\[
H_a(x, y) = \sum_{n=-\infty}^{\infty} (k_a(|x - y + 4n|) - k_a(|x + y + 4n + 2|)).
\]

By direct computation we conclude that

\[
\int_{-1}^{1} H_a(x, y) \varphi_n(y) \, dy = K_a \left(\frac{n\pi}{2} \right) \varphi_n(x)
\]

where

\[
\varphi_n(x) = \sin \frac{n\pi(1+x)}{2}, \quad n \in \mathbb{N}.
\]

(The system \(\{\varphi_n\}_{n=1}^{\infty} \) is an orthonormal basis of \(L^2(-1, 1) \).) We shall demonstrate that the following conditions are satisfied:

1°. \(K_a(\xi) \sim \text{const} \cdot L(\xi)/\xi^\alpha \) when \(\xi \rightarrow +\infty \).

2°. If \(a \) is large enough, the function \(K_a \) is decreasing if \(\xi \) is large enough.

3°. The operator \(D : L^2(0, 2) \rightarrow L^2(0, 2) \) defined by

\[
Df(x) = \int_{0}^{2} k_a(x+y) f(y) \, dy
\]

has the property \(s_n(D) = \sigma(L(n)/n^\alpha) \) \((0 < \alpha < 1/2) \).

4°. The function \(\sum_{n \neq 0; n \neq -1} (k_a(|x - y + 4n|) - k_a(|x + y + 4n + 2|)) \) is bounded on \([-1, 1]^2 \).

The property 4° is the consequence of the linearity of \(L_a \) on \([0, a] \). Simple computation yields

\[
\int_{0}^{2} \int_{0}^{2} |k_a(x+y)|^2 \, dx \, dy < \infty \quad \text{(for every } \alpha > 0)\]

and hence

\[
s_n(D) = \sigma(n^{-1/2}) = \sigma \left(\frac{L(n)}{n^\alpha} \right) \quad \left(0 < \alpha < \frac{1}{2} \right).
\]

By a substitution we obtain

\[
K_a(\xi) = 2\xi^{-\alpha} \int_{0}^{\infty} t^{-\alpha-1} \cos \frac{1}{t} \cdot L_a(\xi t) \, dt.
\]

We shall prove now

\[
Q(\xi) = \int_{0}^{\infty} x^{-\alpha-1} \cos \frac{1}{x} L_a(\xi x) \, dx \sim L(\xi) \int_{0}^{\infty} x^{-\alpha-1} \cos \frac{1}{x} \, dx \quad (\xi \rightarrow +\infty).
\]
Let
\[Q_1(\xi) = \int_{1/\pi}^{+\infty} x^{-\alpha-1} \cos \frac{1}{x} L_\alpha(\xi x) \, dx \]
and
\[Q_2(\xi) = \int_{0}^{1/\pi} x^{-\alpha-1} \cos \frac{1}{x} L_\alpha(\xi x) \, dx. \]

Then by Theorem 2.6, p. 63 in [6] we get
\[Q_1(\xi) = L_\alpha(\xi) \left(\int_{1/\pi}^{\infty} x^{-\alpha-1} \cos \frac{1}{x} \, dx + \sigma(1) \right) \]
\[= L(\xi) \left(\int_{1/\pi}^{\infty} x^{-\alpha-1} \cos \frac{1}{x} \, dx + \sigma(1) \right). \tag{7} \]

By partial integration, we get
\[Q_2(\xi) = \int_{0}^{1/\pi} \sin \frac{1}{x} \cdot x^{-\alpha} L_\alpha(\xi x) \left[1 - \alpha \frac{x L'_\alpha(\xi x)}{L_\alpha(\xi x)} \right] \, dx, \]
i.e.,
\[\frac{Q_2(\xi)}{L_\alpha(\xi)} = (1 - \alpha) \int_{0}^{1/\pi} x^{-\alpha} \sin \frac{1}{x} \frac{L_\alpha(\xi x)}{L_\alpha(\xi)} \, dx + \int_{0}^{1/\pi} x^{-\alpha} \sin \frac{1}{x} \frac{L_\alpha(\xi x)}{L_\alpha(\xi)} \frac{\xi x L'_\alpha(\xi x)}{L_\alpha(\xi x)} \, dx. \]
Since \(L_\alpha \) is a nondecreasing function and \(\lim_{t \to +\infty} t L'_\alpha(t)/L_\alpha(t) = 0 \), by the Lebesgue Dominated Convergence Theorem
\[\frac{Q_2(\xi)}{L_\alpha(\xi)} \to (1 - \alpha) \int_{0}^{1/\pi} x^{-\alpha} \sin \frac{1}{x} \, dx = \int_{0}^{1/\pi} x^{-\alpha-1} \cos \frac{1}{x} \, dx. \]

Therefore
\[Q_2(\xi) = L_\alpha(\xi) \left(\int_{0}^{1/\pi} x^{-\alpha-1} \cos \frac{1}{x} \, dx + \sigma(1) \right) \]
\[= L(\xi) \left(\int_{0}^{1/\pi} x^{-\alpha-1} \cos \frac{1}{x} \, dx + \sigma(1) \right). \tag{8} \]

Since
\[\int_{0}^{\infty} x^{-\alpha-1} \cos \frac{1}{x} \, dx = \Gamma(\alpha) \cos \frac{\alpha \pi}{2} \]
and \(Q = Q_1 + Q_1 \), from (7) and (8) we obtain (6) and
\[K_\alpha(\xi) = 2\Gamma(\alpha) \cos \frac{\alpha \pi}{2} L(\xi) \frac{\xi}{\xi^\alpha} (1 + \sigma(1)), \quad \xi \to +\infty, \]
which proves 1°.
Now we prove property 2° of K_a. Since

$$K'_a(\xi) = -2\alpha\xi^{-\alpha-1}\int_0^\infty x^{-\alpha-1} \cos \frac{1}{x} L_a(\xi x) \, dx$$

$$+ 2\xi^{-\alpha}\int_0^{+\infty} x^{-\alpha} \cos \frac{1}{x} L'_a(\xi x) \, dx$$

$$= 2\frac{L_a(\xi)}{\xi^{\alpha+1}} \left(-2\alpha\Gamma(\alpha) \cos \frac{\alpha\pi}{2} + \sigma(1) + \int_0^\infty x^{-\alpha-1} \cos \frac{1}{x} L'_a(\xi x) \, dx \right),$$

it suffices to prove that

$$\left| \int_0^\infty x^{-\alpha-1} \cos \frac{1}{x} \frac{\xi L'_a(\xi x)}{L_a(\xi)} \, dx \right| < 2\alpha\Gamma(\alpha) \cos \frac{\alpha\pi}{2}$$

if a and ξ are large enough. Since

$$\int_1^\infty x^{-\alpha-1} \cos \frac{1}{x} \frac{\xi L'_a(\xi x)}{L_a(\xi)} \, dx \to 0 \quad (\xi \to +\infty)$$

and

$$\int_{a/\xi}^{a/\xi} x^{-\alpha-1} \cos \frac{1}{x} \frac{\xi L'_a(\xi x)}{L_a(\xi)} \, dx \to 0 \quad (\xi \to +\infty),$$

inequality (10) will follow from

$$\left| \int_0^1 x^{-\alpha-1} \cos \frac{1}{x} \frac{L_a(\xi x)}{L_a(\xi)} \cdot \frac{\xi L'_a(\xi x)}{L_a(\xi)} \, dx \right| \quad (a \text{ large enough and } \xi > a).$$

Applying twice the Bonnet Mean Value Theorem (the functions $x \mapsto L_a(x)$ and $x \mapsto x \cdot L'_a(x)/L_a(x)$ are nondecreasing and decreasing on $[0, \infty)$ and $[x_0, \infty)$ respectively) we get

$$\left| \int_0^1 x^{-\alpha-1} \cos \frac{1}{x} \frac{L_a(\xi x)}{L_a(\xi)} \cdot \frac{\xi L'_a(\xi x)}{L_a(\xi)} \, dx \right| \leq \frac{aL'(a)}{L(a)} \left| \int_{c_1}^{c_2} x^{-\alpha-1} \cos \frac{1}{x} \, dx \right|$$

where $a/\xi < c_1 < c_2 < 1$.

Since the integral $\int_0^\infty x^{-\alpha-1} \cos \frac{1}{x} \, dx$ is convergent and

$$\lim_{x \to +\infty} xL'(x) = 0,$$

(11) holds if a is fixed and large enough and $\xi > a$ is large enough. From 1°, 2°, and (5) it follows that

$$s_n \left(\int_{-1}^1 H_a(x, y) \cdot dy \right) \sim 2\Gamma(\alpha) \cos \frac{\alpha\pi}{2} \frac{L(n)}{(n\pi/2)^\alpha}. $$

From 3° we get

$$s_n \left(\int_{-1}^1 k_a(|x + y + 2|) \cdot dy \right) = \sigma \left(\frac{L(n)}{n^2} \right),$$

$$s_n \left(\int_{-1}^1 k_a(|x + y - 2|) \cdot dy \right) = \sigma \left(\frac{L(n)}{n^2} \right).$$
The function

\[R(x, y) = ka(|x - y - 4|) + \sum_{n \neq 0; n \neq -1} (ka(|x - y + 4n|) - ka(|x + y + 4n + 2|)) \]

is bounded on \([-1, 1]^2\) (a consequence of \(4^0\)), hence \(\int_{-1}^{1} R(x, y) \cdot dy\) is a Hilbert Schmidt operator and

\[
s_n \left(\int_{-1}^{1} R(x, y) \cdot dy \right) = \sigma(n^{-1/2}) = \sigma \left(\frac{L(n)}{n^\alpha} \right).
\]

From (12), (13), (14), and the Ky Fan Theorem it follows that

\[
s_n(B_a') \sim 2\Gamma(\alpha) \cos \frac{\alpha \pi}{2} \frac{L(n)}{(n\pi/2)^\alpha}.
\]

From (15) and from

\[
\int_R ka \left(\frac{|t|}{2} \right) e^{itx} dt = 2\Gamma(\alpha) \cos \frac{\alpha \pi}{2} \frac{L(2\xi)}{(2\xi)^\alpha}(1 + \sigma(1))
\]

by substitution in the eigenvalue relation \(B_a e_n = \lambda_n e_n\), we obtain

\[
s_n(B_a) \sim \Gamma(\alpha) \cos \frac{\alpha \pi}{2} \frac{L(n)}{(n\pi)^\alpha}.
\]

Lemma 1 is proved.

From now on suppose \(a\) is a fixed and large enough number such that (1) holds.

Proof of Theorem 1 in Case A. Since

\[Af(x) = \int_0^x k(x - y) f(y) dy, \]

we have

\[(A + A^*) f = B f = \int_0^1 k(|x - y|) f(y) dy.\]

By Lemma 1 we get

\[
\lim_{n \to \infty} \frac{s_n(B)}{s_n(B_a)} = 1
\]

and so

\[s_{2n}(B) \geq c_1 s_{2n}(B_a) \]

\((c_1'\) does not depend on \(n\)). The last inequality and (16) imply

\[s_{2n}(B) \geq c_1 \frac{L(n)}{n^\alpha} \]

\((c_1'\) does not depend on \(n\)).

Since \(s_{2n}(B) \leq s_n(A) + s_n(A^*) = 2s_n(A)\), we obtain

\[
s_n(A) \geq \frac{c_1}{2} \frac{L(n)}{n^\alpha}.
\]

Now we prove the following inequality

\[
s_n(A) \leq \text{const} \frac{L(n)}{n^\alpha} \]

\((\text{const}\) does not depend on \(n\)).

Here we use the following lemma proved in [4].
Lemma 2. Let $K_n(x, y)$ be a sequence of functions integrable to x and to y individually, $0 \leq x, y \leq 1$. Let $K(x, y)$ be a similar function, and suppose that for almost all y

$$\int_0^1 |K(x, y) - K_n(x, y)| \, dx \leq \beta_n \quad (\beta_n \to 0)$$

and also that for almost all x

$$\int_0^1 |K(x, y) - K_n(x, y)| \, dy \leq \gamma_n \quad (\gamma_n \to 0).$$

Finally, suppose that for each n

$$\mathcal{H}_n = \int_0^1 K_n(x, y) \cdot dy$$

is a compact operator on $L^2(0, 1)$. Then $\mathcal{H} = \int_0^1 K(x, y) \cdot dy$ is also a compact operator on $L^2(0, 1)$ and

$$s_n(\mathcal{H}) \leq s_n(\mathcal{H}_n) + \sqrt{\beta_n \gamma_n}.$$

Now let us put

$$K_n(x, y) = \begin{cases} (x - y + \frac{1}{n})^{\alpha-1} L \left(\frac{1}{x-y+1/n} \right), & y < x, \\ 0, & y \geq x, \end{cases}$$

and

$$K(x, y) = \begin{cases} (x - y)^{\alpha-1} L \left(\frac{1}{x-y} \right), & y < x, \\ 0, & y \geq x. \end{cases}$$

The function $t \mapsto t^{\alpha-1} L(1/t)$ is decreasing (for $0 < \alpha < 1$) and hence

$$\int_0^1 |K(x - y) - K_n(x, y)| \, dy = \int_0^{1/n} t^{\alpha-1} L \left(\frac{1}{t} \right) \, dt - \int_x^{x+1/n} t^{\alpha-1} L \left(\frac{1}{t} \right) \, dt < \int_0^{1/n} t^{\alpha-1} L \left(\frac{1}{t} \right) \, dt.$$

Since

$$\int_0^{1/n} L^{\alpha-1} \left(\frac{1}{t} \right) \, dt = \int_n^{+\infty} t^{-\alpha-1} L(t) \, dt$$

and

$$\int_x^{+\infty} t^{-\alpha-1} L(t) \, dt \sim \frac{1}{\alpha} \frac{L(x)}{x^{\alpha}} \quad (x \to +\infty),$$

we get

$$\int_0^1 |K(x, y) - K_n(x, y)| \, dy \leq c_3 \frac{L(n)}{n^\alpha} \quad (c_3 \text{ does not depend on } n).$$

Similarly,

$$\int_0^1 |K_n(x, y) - K_n(x, y)| \, dx \leq c_4 \frac{L(n)}{n^\alpha} \quad (c_4 \text{ does not depend on } n).$$
From (19), (20), and Lemma 2 we obtain

\[s_n(A) \leq \sqrt{c_3 c_4 \frac{L(n)}{n^\alpha}} + s_n(\mathcal{H}_n). \]

Now, we can estimate the norm \(\| \mathcal{H}_n \|_2 \) (Hilbert Schmidt norm). We have

\[\| \mathcal{H}_n \|_2^2 = \int_0^1 \int_0^1 |K_n(x, y)|^2 \, dx \, dy \]
\[= \int_{1/n}^{1+1/n} y^{2\alpha-2} \left(L \left(\frac{1}{y} \right) \right)^2 \cdot \left(1 - y + \frac{1}{n} \right) \, dy \]
\[\leq \int_{1/n}^{1+1/n} y^{2\alpha-2} \left(L \left(\frac{1}{y} \right) \right)^2 \, dy. \]

From this inequality by simple computation we get

\[\| \mathcal{H}_n \|_2^2 \leq c_5 n^{1-2\alpha} (L(n))^2 \] (\(c_5 \) does not depend on \(n \)).

Since \(n s_n^2 (\mathcal{H}_n) \leq \| \mathcal{H}_n \|_2^2 \), we obtain

\[s_n(\mathcal{H}_n) \leq c_6 \frac{L(n)}{n^\alpha} \] (\(c_6 \) does not depend on \(n \)).

Now (18) follows from (21) and (22). The theorem is proved for the case when the function \(L \) is not bounded.

Case B: The function \(L \) is bounded. Since \(L \) is nondecreasing we have \(\lim_{x \to +\infty} L(x) = d < \infty \). By assumption of Theorem 1 we get \(d > 0 \).

Lemma 3. Suppose \(r \in C[0, 1] \), \(r(0) = 0 \), and \(G \) is a linear operator on \(L^2(0, 1) \) defined by

\[Gf(x) = \int_0^x (x - y)^{\alpha-1} r(x - y) f(y) \, dy. \]

If \(0 < \alpha < 1/2 \), then

\[\lim_{n \to \infty} n^\alpha s_n(G) = 0. \] (23)

Proof of Lemma 3. Let us represent \(G \) as

\[Gf(x) = \int_0^1 |x - y|^{\alpha-1} M(x, y) f(y) \, dy \]

where

\[M(x, y) = \begin{cases} r(x - y), & 0 < y \leq x < 1, \\ 0, & 1 \geq y \geq x \geq 0. \end{cases} \]

Let \(\epsilon > 0 \). Then there exists \(\delta > 0 \) such that \(|M(x, y)| < \epsilon \) if \(|x - y| < \delta \).

Put

\[\Omega_1 = [0, 1]^2 \setminus \{(x, y): |x - y| < \delta \}, \quad \Omega_2 = [0, 1]^2 \setminus \Omega_1. \]

Suppose \(G_1, G_2 \) are linear operators on \(L^2(0, 1) \) defined by

\[G_if(x) = \int_0^1 |x - y|^{\alpha-1} \chi_{\Omega_i}(x, y) M(x, y) f(y) \, dy, \quad i = 1, 2 \]

(\(\chi_{\Omega_i} \) are characteristic functions of \(\Omega_i \), \(i = 1, 2 \)).
Then \(G = G_1 + G_2 \) and
\[
(24) \quad s_{2n}(G) \leq s_n(G_1) + s_n(G_2).
\]
By Lemma 1 from [1] we obtain
\[
s_n(G_1) \leq \text{const} \cdot \varepsilon \left[\int_0^{1/n} t^{a-1} dt + n^{-1/2} \left(\int_{1/n}^\infty t^{2a-2} dt \right)^{1/2} \right],
\]
i.e. (since \(0 < \alpha < 1/2 \)),
\[
(25) \quad s_n(G_1) \leq \text{const} \cdot \varepsilon \cdot \frac{1}{n^\alpha} \quad \text{(const does not depend on } n\text{)}.
\]
On the other hand, \(G_2 \) is a Hilbert Schmidt operator and hence
\[
s_n(G_2) \leq c_7(\delta) \cdot n^{-1/2}.
\]
From the previous inequality we get (for \(0 < \alpha < 1/2 \))
\[
(26) \quad n^\alpha s_n(G_2) < \varepsilon
\]
if \(n \) is large enough.

From (24), (25), and (26) we obtain
\[
\lim_{n \to \infty} n^\alpha s_{2n}(G) = 0
\]
and
\[
\lim_{n \to \infty} n^\alpha s_n(G) = 0.
\]

Proof of Theorem 1 in Case B. Put \(r(x) = L(1/x) - d \). Applying Lemma 3 we get
\[
(27) \quad \lim_{n \to \infty} n^\alpha s_n \left(\int_0^x (x - y)^{a-1} \left(L \left(\frac{1}{x - y} \right) - d \right) \cdot dy \right) = 0.
\]
In [2] it is proved that
\[
s_n \left(\int_0^x (x - y)^{a-1} \cdot dy \right) \sim \Gamma(\alpha)(n\pi)^{-\alpha}.
\]
From (27), the previous asymptotic formula, and the Ky Fan Theorem we conclude
\[
s_n \left(\int_0^x (x - y)^{a-1} \left(L \left(\frac{1}{x - y} \right) \cdot dy \right) \sim d \cdot \Gamma(\alpha)(n\pi)^{-\alpha}.
\]

Theorem 1 is proved.

Remark. From the proof it is evident that if \(L \) is bounded, then it is enough to suppose that \(L \) is continuous and \(\lim_{x \to \infty} L(x) = d \neq 0 \).

Theorem 2. Suppose function \(L \) satisfies conditions from the beginning of this paper. Let \(r \in C^1[0, 1] \), \(r(0) = 0 \), \(k_1(x) = k(x)(1+r(x)) \) \((k(x) = x^{a-1}L(1/x)) \), and let \(A_1: L^2(0, 1) \to L^2(0, 1) \) be a linear operator defined by
\[
A_1 f(x) = \int_0^x k_1(x - y) f(y) \, dy.
\]
If \(0 < \alpha < 1/2 \), then \(s_n(A_1) \sim L(n)/n^\alpha \).
Lemma 4. Suppose A and B are composed operators on Hilbert space \mathcal{H} such that $s_n(A) \asymp L(n)/n^\beta$ (L is a slowly varying function, $\beta > 0$) and $\lim_{n \to \infty} \frac{n^\beta}{L(n)} s_n(B) = 0$. Then $s_n(A + B) \asymp L(n)/n^\beta$.

Proof of Lemma 4. From conditions $s_n(A) \asymp L(n)/n^\beta$ it follows that there exists constants $d_1 > 0$ and $d_2 > 0$ such that

$$d_2 \frac{L(n)}{n^\beta} \leq s_n(A) \leq d_1 \frac{L(n)}{n^\beta}. \quad (28)$$

For arbitrary $k \in \mathbb{N}$, $n = (k + 1)m + j$, $j = 0, 1, 2, \ldots, k$, by properties of singular values [5], we have

$$s_{(k+1)m+j}(A + B) \leq s_{km+j}(A) + s_{m+1}(B),$$

i.e.,

$$\frac{s_{(k+1)m+j}(A + B)}{s_{(k+1)m+j}(A)} \leq \left(1 + \frac{s_{m+1}(B)}{s_{km+j}(A)}\right) \cdot \frac{s_{km+j}(A)}{s_{(k+1)m+j}(A)}. \quad (29)$$

From (28) we get

$$\frac{s_{(k+1)m+j}(A + B)}{s_{(k+1)m+j}(A)} \leq \left(1 + \frac{s_{m+1}(B)}{s_{km+j}(A)}\right) \cdot \frac{d_1}{d_2} \left(\frac{(k + 1)m + j}{km + j}\right)^\beta \frac{L(km + j)}{L((k + 1)m + j)}. \quad (30)$$

Since $\frac{n^\beta}{L(n)} s_n(A) \to 0$ (or equivalently $s_n(B)/s_n(A) \to 0$) we obtain

$$\lim_{n \to \infty} \frac{s_n(A + B)}{s_n(A)} \leq \frac{d_1}{d_2} \left(\frac{k + 1}{k}\right)^\beta. \quad (31)$$

As k is arbitrary, we get

$$\lim_{n \to \infty} \frac{s_n(A + B)}{s_n(A)} \leq \frac{d_1}{d_2}. \quad (32)$$

Similarly, we get

$$\lim_{n \to \infty} \frac{s_n(A + B)}{s_n(A)} \geq \frac{d_2}{d_1}. \quad (33)$$

Lemma 4 is proved.

Proof of Theorem 2. Since $r \in C^1[0, 1]$ and $r(0) = 0$, $\int_0^x k(x - y)r(x - y) \cdot dy$ is a Hilbert Schmidt operator and therefore

$$s_n \left(\int_0^x k(x - y)r(x - y) \cdot dy\right) = \sigma(n^{-1/2}) = \sigma \left(\frac{L(n)}{n^\alpha}\right) \quad (0 < \alpha < \frac{1}{2}). \quad (34)$$

From Theorem 1 we have

$$s_n \left(\int_0^x k(x - y) \cdot dy\right) \leq \frac{L(n)}{n^\alpha}. \quad (35)$$

The statement of Theorem 2 follows from (34), (35), and Lemma 4.

Example. Let $L(x) = (\ln x)^\beta$, $\beta \geq 0$, and let the function r satisfy $r \in C^1[0, 1]$, $r(0) \neq 0$. We consider the operator $T: L^2(0, 1) \to L^2(0, 1)$ defined by

$$Tf(x) = \int_0^x (x - y)^{\alpha - 1}(-\ln(x - y))^\beta r(x - y)f(y)dy \quad (0 < \alpha < 1/2).$$

Then $s_n(T) \asymp (\ln n)^\beta/n^\alpha$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
References

Matematički Fakultet, Studentski TRG 16, Belgrade, Serbia