Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Non-Smirnov domains


Author: Knut Øyma
Journal: Proc. Amer. Math. Soc. 123 (1995), 1425-1429
MSC: Primary 30C20
DOI: https://doi.org/10.1090/S0002-9939-1995-1264827-7
MathSciNet review: 1264827
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ \Omega $ is a Jordan domain, a small perturbation of the boundary gives a non-Smirnov domain.


References [Enhancements On Off] (What's this?)

  • [1] E. F. Collingwood and A. J. Lohwater, The theory of cluster sets, Cambridge Univ. Press, Cambridge and New York, 1966. MR 0231999 (38:325)
  • [2] P. Duren, Theory of $ {H^p}$ spaces, Academic Press, New York, 1970. MR 0268655 (42:3552)
  • [3] P. Duren, H. S. Shapiro, and A. Shields, Singular measures and domains not of Smirnov type, Duke Math. J. 33 (1966), 247-254. MR 0199359 (33:7506)
  • [4] J. Garnett, Bounded analytic functions, Academic Press, New York, 1981. MR 628971 (83g:30037)
  • [5] M. W. Keldysh and M. A. Lavrentiev, Sur la représentation conforme des domaines limités par des courbes rectifiables, Ann. Sci. École Norm. Sup. 54 (1937), 1-38.
  • [6] I. I. Privalov, Randeigenschaften analytischer Funktionen, Deutscher Verlag, Berlin, 1956. MR 0083565 (18:727f)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30C20

Retrieve articles in all journals with MSC: 30C20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1264827-7
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society