Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Universal Pettis integrability property

Author: Gunnar F. Stefánsson
Journal: Proc. Amer. Math. Soc. 123 (1995), 1431-1435
MSC: Primary 46G10; Secondary 28B05, 46E40
MathSciNet review: 1277135
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Functions into duals and pre-duals of weakly compactly generated spaces (WCG) are studied.

We show that a universally weakly measurable function f into a dual of a WCG has the RS property. Also, for such a function, we sharpen the decomposition obtained by E. M. Bator (1988).

We show that bounded weakly measurable functions into pre-duals of WCG spaces are always Pettis integrable, universally weakly measurable, or not.

References [Enhancements On Off] (What's this?)

  • [1] D. Amir and J. Lindenstrauss, The structure of weakly compact sets in Banach spaces, Ann. of Math. (2) 80 (1968), 34-46. MR 0228983 (37:4562)
  • [2] E. M. Bator, Pettis decomposition for universally scalarly measurable functions, Proc. Amer. Math. Soc. 104 (1988), 795-800. MR 964859 (89m:28016)
  • [3] W. J. Davis, T. Figiel, W. B. Johnson, and A. Pelczynski, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311-327. MR 0355536 (50:8010)
  • [4] R. Phillips, Integrability in a convex linear topological space, Trans. Amer. Math. Soc. 47 (1940), 114-145. MR 0002707 (2:103c)
  • [5] L. H. Riddle, E. Saab, and J. J. Uhl, Sets with the weak Radon-Nikodym property in dual Banach spaces, Indiana Univ. Math. J. 32 (1978), 845-886. MR 703283 (84h:46028)
  • [6] G. F. Stefánsson, Pettis integrability, Trans. Amer. Math. Soc. 330 (1992), 401-418. MR 1070352 (92f:46054)
  • [7] M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc., no. 307, Amer. Math. Soc., Providence, RI, 1984. MR 756174 (86j:46042)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46G10, 28B05, 46E40

Retrieve articles in all journals with MSC: 46G10, 28B05, 46E40

Additional Information

Keywords: Universally weakly measurable, $ {\text{weak}^ \ast }$ integral, Pettis integral
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society