Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Free amalgams of rank two


Author: Shmuel Rosset
Journal: Proc. Amer. Math. Soc. 123 (1995), 1351-1356
MSC: Primary 20E06; Secondary 20E05, 20F05
DOI: https://doi.org/10.1090/S0002-9939-1995-1283563-4
MathSciNet review: 1283563
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For every $ n > 1$ and $ m > 1$ we construct an amalgamated free product $ U{ \ast _W}V$ which is free of rank 2, while U is (free) of rank n , V is of rank m, and W is, necessarily, of rank $ n + m - 2$.


References [Enhancements On Off] (What's this?)

  • [1] K. S. Brown, Cohomology of groups, Graduate Texts in Math., vol. 87, Springer-Verlag, Berlin, 1982. MR 672956 (83k:20002)
  • [2] L. Greenberg, Discrete groups of motions, Canad. J. Math. 12 (1960), 414-425. MR 0115130 (22:5932)
  • [3] M. Hall and T. Rado, On Schreier systems in free groups, Trans. Amer. Math. Soc. 64 (1948), 386-408. MR 0026051 (10:98f)
  • [4] R. C. Lyndon, The equation $ {a^2}{b^2} = {c^2}$ in free groups, Michigan Math. J. 6 (1959), 155-164.
  • [5] R. C. Lyndon and P. E. Schupp, Combinatorial group theory, Ergeb. Math. Grenzgeb. (3), vol. 89, Springer-Verlag, Berlin and New York, 1977. MR 0577064 (58:28182)
  • [6] S. Rosset, Finite index and finite codimension, J. Pure Appl. Algebra (to appear). MR 1359694 (97a:20043)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20E06, 20E05, 20F05

Retrieve articles in all journals with MSC: 20E06, 20E05, 20F05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1283563-4
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society