Constant mean curvature discs with bounded area
Authors:
Rafael López and Sebastián Montiel
Journal:
Proc. Amer. Math. Soc. 123 (1995), 15551558
MSC:
Primary 53A10
MathSciNet review:
1286001
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: It has been long conjectured that the two spherical caps are then only discs in the Euclidean threespace with nonzero constant mean curvature spanning a round circle. In this work, we prove that it is true when the area of such a disc is less than or equal to that of the big spherical cap.
 [BC]
Jo
ao Lucas Barbosa and Manfredo
do Carmo, Stability of minimal surfaces and eigenvalues of the
Laplacian, Math. Z. 173 (1980), no. 1,
13–28. MR
584346 (81h:53007), http://dx.doi.org/10.1007/BF01215521
 [BE]
Fabiano
Brito and Ricardo
Sa Earp, Geometric configurations of constant mean curvature
surfaces with planar boundary, An. Acad. Brasil. Ciênc.
63 (1991), no. 1, 5–19. MR 1115489
(92h:53009)
 [BZ]
Yu.
D. Burago and V.
A. Zalgaller, Geometric inequalities, Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences], vol. 285, SpringerVerlag, Berlin, 1988. Translated from
the Russian by A. B. Sosinskiĭ; Springer Series in Soviet
Mathematics. MR
936419 (89b:52020)
 [EBMR]
Ricardo
Earp, Fabiano
Brito, William
H. Meeks III, and Harold
Rosenberg, Structure theorems for constant mean curvature surfaces
bounded by a planar curve, Indiana Univ. Math. J. 40
(1991), no. 1, 333–343. MR 1101235
(93e:53009), http://dx.doi.org/10.1512/iumj.1991.40.40017
 [H]
Erhard
Heinz, On the nonexistence of a surface of constant mean curvature
with finite area and prescribed rectifiable boundary, Arch. Rational
Mech. Anal. 35 (1969), 249–252. MR 0246237
(39 #7541)
 [K]
Nicolaos
Kapouleas, Compact constant mean curvature surfaces in Euclidean
threespace, J. Differential Geom. 33 (1991),
no. 3, 683–715. MR 1100207
(93a:53007b)
 [KKS]
Nicholas
J. Korevaar, Rob
Kusner, and Bruce
Solomon, The structure of complete embedded surfaces with constant
mean curvature, J. Differential Geom. 30 (1989),
no. 2, 465–503. MR 1010168
(90g:53011)
 [BC]
 J. L. Barbosa and M. do Carmo, A proof of a general isoperimetric inequality for surfaces, Math. Z. 173 (1980), 1328. MR 584346 (81h:53007)
 [BE]
 F. Brito and R. S. Earp, Geometric configurations of constant mean curvature surfaces with planar boundary, Ann. Acad. Brasil. Ciênc. 63 (1991), 519. MR 1115489 (92h:53009)
 [BZ]
 Y. Burago and V. Zalgaller, Geometric inequalities, SpringerVerlag, New York, 1988. MR 936419 (89b:52020)
 [EBMR]
 R. Earp, F. Brito, W. H. Meeks III, and H. Rosenberg, Structure theorems for constant mean curvature surfaces bounded by a planar curve, Indiana Univ. Math. J. 40 (1991), 333343. MR 1101235 (93e:53009)
 [H]
 H. Heinz, On the nonexistence of a surface of constant mean curvature with finite area and prescribed rectifiable boundary, Arch. Rational Mach. Anal. 35 (1969), 249252. MR 0246237 (39:7541)
 [K]
 N. Kapouleas, Compact constant mean curvature surfaces in Euclidean threespace, J. Differential Geom. 33 (1991), 683715. MR 1100207 (93a:53007b)
 [KKS]
 N. Korevaar, R. Kusner, and B. Solomon, The structure of complete embedded surfaces with constant mean curvature, J. Differential Geom. 30 (1989), 465503. MR 1010168 (90g:53011)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
53A10
Retrieve articles in all journals
with MSC:
53A10
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939199512860010
PII:
S 00029939(1995)12860010
Keywords:
Constant mean curvature,
disc,
isoperimetric inequality
Article copyright:
© Copyright 1995
American Mathematical Society
