Constant mean curvature discs with bounded area

Authors:
Rafael López and Sebastián Montiel

Journal:
Proc. Amer. Math. Soc. **123** (1995), 1555-1558

MSC:
Primary 53A10

DOI:
https://doi.org/10.1090/S0002-9939-1995-1286001-0

MathSciNet review:
1286001

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It has been long conjectured that the two spherical caps are then only discs in the Euclidean three-space with non-zero constant mean curvature spanning a round circle. In this work, we prove that it is true when the area of such a disc is less than or equal to that of the big spherical cap.

**[B-C]**João Lucas Barbosa and Manfredo do Carmo,*Stability of minimal surfaces and eigenvalues of the Laplacian*, Math. Z.**173**(1980), no. 1, 13–28. MR**584346**, https://doi.org/10.1007/BF01215521**[B-E]**Fabiano Brito and Ricardo Sa Earp,*Geometric configurations of constant mean curvature surfaces with planar boundary*, An. Acad. Brasil. Ciênc.**63**(1991), no. 1, 5–19. MR**1115489****[B-Z]**Yu. D. Burago and V. A. Zalgaller,*Geometric inequalities*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285, Springer-Verlag, Berlin, 1988. Translated from the Russian by A. B. Sosinskiĭ; Springer Series in Soviet Mathematics. MR**936419****[E-B-M-R]**Ricardo Earp, Fabiano Brito, William H. Meeks III, and Harold Rosenberg,*Structure theorems for constant mean curvature surfaces bounded by a planar curve*, Indiana Univ. Math. J.**40**(1991), no. 1, 333–343. MR**1101235**, https://doi.org/10.1512/iumj.1991.40.40017**[H]**Erhard Heinz,*On the nonexistence of a surface of constant mean curvature with finite area and prescribed rectifiable boundary*, Arch. Rational Mech. Anal.**35**(1969), 249–252. MR**0246237**, https://doi.org/10.1007/BF00248159**[K]**Nicolaos Kapouleas,*Compact constant mean curvature surfaces in Euclidean three-space*, J. Differential Geom.**33**(1991), no. 3, 683–715. MR**1100207****[K-K-S]**Nicholas J. Korevaar, Rob Kusner, and Bruce Solomon,*The structure of complete embedded surfaces with constant mean curvature*, J. Differential Geom.**30**(1989), no. 2, 465–503. MR**1010168**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
53A10

Retrieve articles in all journals with MSC: 53A10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1286001-0

Keywords:
Constant mean curvature,
disc,
isoperimetric inequality

Article copyright:
© Copyright 1995
American Mathematical Society