Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The diameter conjecture for quasiconformal maps is true in space


Author: Juha Heinonen
Journal: Proc. Amer. Math. Soc. 123 (1995), 1709-1718
MSC: Primary 30C65
DOI: https://doi.org/10.1090/S0002-9939-1995-1234626-0
MathSciNet review: 1234626
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The diameter conjecture for quasiconformal maps is a natural generalization of the Hayman-Wu theorem on level sets of a univalent function. Astala, Fernández, and Rohde recently disproved this conjecture in the plane. Here we show it is true in space.


References [Enhancements On Off] (What's this?)

  • [AFR] K. Astala, J. L. Fernández, and S. Rohde, Quasilines and the Hayman-Wu theorem, Indiana Univ. Math. J. 42 (1993), 1077-1100. MR 1266085 (94m:30044)
  • [BJ] C. J. Bishop and P. W. Jones, Harmonic measure and arclength, Ann. of Math. (2) 132 (1990), 511-547. MR 1078268 (92c:30026)
  • [FHM] J. L. Fernández, J. Heinonen, and O. Martio, Quasilines and conformal mappings, J. Analyse Math. 52 (1989), 117-132. MR 981499 (90a:30017)
  • [FH] J. L. Fernández and D. H. Hamilton, Length of curves under conformal mappings, Comment. Math. Helv. 62 (1987), 122-134. MR 882968 (88i:30011)
  • [F] K. J. Falconer, The geometry of fractal sets, Cambridge Univ. Press, Cambridge, England, 1985. MR 867284 (88d:28001)
  • [GGJ] J. B. Garnett, F. W. Gehring, and P. W. Jones, Conformally invariant length sums, Indiana Univ. Math. J. 32 (1983), 809-829. MR 721565 (85a:30033)
  • [G] F. W. Gehring, Extension of quasiconformal mappings in three space, J. Analyse Math. 14 (1965), 171-182. MR 0179354 (31:3602)
  • [GO] F. W. Gehring and B. G. Osgood, Uniform domains and the quasi-hyperbolic metric, J. Analyse Math. 36 (1979), 50-74. MR 581801 (81k:30023)
  • [GV] F. W. Gehring and J. Väisälä, The coefficients of quasiconformality of domains in space, Acta Math. 114 (1965), 1-70. MR 0180674 (31:4905)
  • [GNV] M. Ghamsari, R. Näkki, and J. Väisälä, John disks and extension of maps, Monatsh. Math. 117 (1994), 63-94. MR 1266774 (95e:30023)
  • [HaW] W. K. Hayman and J.-M. Wu, Level sets of univalent functions, Comment. Math. Helv. 56 (1981), 366-403. MR 639358 (83b:30008)
  • [HK] J. Heinonen and P. Koskela, The boundary distortion of a quasiconformal mapping, Pacific J. Math. 165 (1994), 93-114. MR 1285566 (95f:30031)
  • [HN] J. Heinonen and R. Näkki, Quasiconformal distortion on arcs, J. Analyse Math. 63 (1994), 19-53. MR 1269214 (95c:30027)
  • [HeW] J. Heinonen and J.-M. Wu, Quasicircles, harmonic measure and $ {A_\infty }$, Linear and Complex Analysis Problem Book 3, Part II, Lecture Notes in Math., vol. 1574, Springer-Verlag, pp. 416-419.
  • [N] M. H. A. Newman, Elements of the topology of plane sets of points, Cambridge Univ. Press, Cambridge, England, 1961. MR 0132534 (24:A2374)
  • [Ø] K. Øyma, Harmonic measure and conformal length, Proc. Amer. Math. Soc. 115 (1992), 687-689. MR 1101991 (92i:30007)
  • [V1] J. Väisälä, Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Math., vol. 229, Springer-Verlag, Berlin, Heidelberg and New York, 1971. MR 0454009 (56:12260)
  • [V2] -, Bounded turning and quasiconformal maps, Monatsh. Math. 111 (1991), 233-244. MR 1111864 (92f:30031)
  • [Vu] M. Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Math, vol. 1319, Springer-Verlag, New York, 1988. MR 950174 (89k:30021)
  • [W] J.-M. Wu, Boundary density and the Green function, Michigan Math. J. 38 (1991), 175-189. MR 1098855 (92g:31009)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30C65

Retrieve articles in all journals with MSC: 30C65


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1234626-0
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society