Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Best constants for two nonconvolution inequalities


Authors: Michael Christ and Loukas Grafakos
Journal: Proc. Amer. Math. Soc. 123 (1995), 1687-1693
MSC: Primary 42B25; Secondary 26D15, 47B38
MathSciNet review: 1239796
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The norm of the operator which averages $ \vert f\vert$ in $ {L^p}({\mathbb{R}^n})$ over balls of radius $ \delta \vert x\vert$ centered at either 0 or x is obtained as a function of n , p and $ \delta $. Both inequalities proved are n-dimensional analogues of a classical inequality of Hardy in $ {\mathbb{R}^1}$. Finally, a lower bound for the operator norm of the Hardy-Littlewood maximal function on $ {L^p}({\mathbb{R}^n})$ is given.


References [Enhancements On Off] (What's this?)

  • [BT] Albert Baernstein II and B. A. Taylor, Spherical rearrangements, subharmonic functions, and *-functions in 𝑛-space, Duke Math. J. 43 (1976), no. 2, 245–268. MR 0402083
  • [HLP] G. Hardy, J. Littlewood, and G. Pólya, Inequalities, The University Press, Cambridge, 1959.
  • [F] William G. Faris, Weak Lebesgue spaces and quantum mechanical binding, Duke Math. J. 43 (1976), no. 2, 365–373. MR 0425598
  • [PS] G. Pólya and G. Szegö, Isoperimatric inequalities in mathematical physics, Princeton Univ. Press, Princeton, NJ, 1951.
  • [S] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
  • [SO] S. L. Sobolev, On a theorem of functional analysis, Mat. Sb. (N.S.) 4 (1938), 471-497; English transl., Amer. Math. Soc. Transl. Ser. 2, vol. 34, Amer. Math. Soc., Providence, RI, 1963, pp. 39-68.
  • [SS] E. M. Stein and J.-O. Strömberg, Behavior of maximal functions in 𝑅ⁿ for large 𝑛, Ark. Mat. 21 (1983), no. 2, 259–269. MR 727348, 10.1007/BF02384314
  • [SW] Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32. MR 0304972

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42B25, 26D15, 47B38

Retrieve articles in all journals with MSC: 42B25, 26D15, 47B38


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1995-1239796-6
Article copyright: © Copyright 1995 American Mathematical Society