Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on Morita equivalence of twisted $ C\sp *$-dynamical systems


Author: S. Kaliszewski
Journal: Proc. Amer. Math. Soc. 123 (1995), 1737-1740
MSC: Primary 46L55; Secondary 46L05
DOI: https://doi.org/10.1090/S0002-9939-1995-1239797-8
MathSciNet review: 1239797
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present an elementary proof that every twisted $ {C^ \ast }$-dynamical system is Morita equivalent to an ordinary system. As a corollary we prove the equivalence $ {C_0}(G/H,A){ \times _{\tilde \alpha ,\tilde u}}G \sim A{ \times _{\alpha ,u}}H$ for Busby-Smith twisted dynamical systems, generalizing an important result of Green.


References [Enhancements On Off] (What's this?)

  • [1] Huu Hung Bui, Morita equivalence of twisted crossed products, preprint, 1993. MR 1260162 (95k:46107)
  • [2] Robert C. Busby and Harvey A. Smith, Representations of twisted group algebras, Trans. Amer. Math. Soc. 149 (1970), 503-537. MR 0264418 (41:9013)
  • [3] F. Combes, Crossed products and Morita equivalence, Proc. London Math. Soc. (3) 49 (1984), 289-306. MR 748991 (86c:46081)
  • [4] R. Curto, P. Muhly, and D. Williams, Cross products of strongly Morita equivalent $ {C^ \ast }$-algebras, Proc. Amer. Math. Soc. 90 (1984), 528-530. MR 733400 (85i:46083)
  • [5] Siegfried Echterhoff, Morita equivalent twisted actions and a new version of the Packer-Raeburn stabilization trick, preprint, 1992. MR 1277761 (96a:46118)
  • [6] Philip Green, The local structure of twisted covariance algebras, Acta Math. 140 (1978), 191-250. MR 0493349 (58:12376)
  • [7] C. C. Moore, Group extensions and cohomology for locally compact groups. III, Trans. Amer. Math. Soc. 221 (1976), 1-33. MR 0414775 (54:2867)
  • [8] Judith Packer and Iain Raeburn, Twisted crossed products of $ {C^ \ast }$-algebras, Math. Proc. Cambridge Philos. Soc. 106 (1989), 293-311. MR 1002543 (90g:46097)
  • [9] -, Twisted crossed products of $ {C^ \ast }$-algebras. II, Math. Ann. 287 (1990), 595-612. MR 1066817 (92b:46106)
  • [10] Marc A. Rieffel, Induced representations of $ {C^ \ast }$-algebras, Adv. Math. 13 (1974), 176-257. MR 0353003 (50:5489)
  • [11] -, Morita equivalence for operator algebras, Operator Algebras and Applications (Richard V. Kadison, ed.), Amer. Math. Soc., Providence, RI, 1982, pp. 285-298. MR 679708 (84k:46045)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L55, 46L05

Retrieve articles in all journals with MSC: 46L55, 46L05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1239797-8
Keywords: $ {C^ \ast }$-algebra, dynamical system, Morita equivalence
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society