Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Normal derivations in norm ideals


Author: Fuad Kittaneh
Journal: Proc. Amer. Math. Soc. 123 (1995), 1779-1785
MSC: Primary 47B47; Secondary 47B10
DOI: https://doi.org/10.1090/S0002-9939-1995-1242091-2
MathSciNet review: 1242091
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We establish the orthogonality of the range and the kernel of a normal derivation with respect to the unitarily invariant norms associated with norm ideals of operators. Related orthogonality results for certain nonnormal derivations are also given.


References [Enhancements On Off] (What's this?)

  • [1] J. H. Anderson, On normal derivations, Proc. Amer. Math. Soc. 38 (1973), 135-140. MR 0312313 (47:875)
  • [2] R. Bhatia and F. Kittaneh, Norm inequalities for partitioned operators and an application, Math. Ann. 287 (1990), 719-726. MR 1066826 (91f:47010)
  • [3] S. L. Campbell and R. Gellar, Linear operators for which $ {T^ \ast }T$ and $ {T^ \ast } + T$ commute, Proc. Amer. Math. Soc. 60 (1976), 197-202. MR 0417841 (54:5889)
  • [4] B. P. Duggal, On generalised Putnam-Fuglede theorems, Monatsh. Math. 107 (1989), 309-332. MR 1012463 (90g:47045)
  • [5] -, A remark on normal derivations of Hilbert-Schmidt type, Monatsh. Math. 112 (1991), 265-270. MR 1141094 (92m:47067)
  • [6] R. G. Douglas, On majorization, factorization and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415. MR 0203464 (34:3315)
  • [7] S. N. Elalami, Opérateurs complètement finis, preprint.
  • [8] W. Feng and G. Ji, A counterexample in the theory of derivations, Glasgow Math. J. 31 (1989), 161-163. MR 997810 (90g:47040)
  • [9] I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monographs, vol. 18, Amer. Math. Soc., Providence, RI, 1969. MR 0246142 (39:7447)
  • [10] P. R. Halmos, A Hilbert space problem book, Springer-Verlag, New York, 1982. MR 675952 (84e:47001)
  • [11] F. Kittaneh, On normal derivations of Hilbert-Schmidt type, Glasgow Math. J. 29 (1987), 245-248. MR 901671 (88k:47049)
  • [12] P. J. Maher, Commutator approximants, Proc. Amer. Math. Soc. 115 (1992), 995-1000. MR 1086335 (92j:47059)
  • [13] R. Schatten, Norm ideals of completely continuous operators, Springer-Verlag, Berlin, 1960. MR 0119112 (22:9878)
  • [14] B. Simon, Trace ideals and their applications, Cambridge Univ. Press, London and New York, 1979. MR 541149 (80k:47048)
  • [15] J. G. Stampfli and B. L. Wadhwa, An asymmetric Putnam-Fuglede theorem for dominant operators, Indiana Univ. Math. J. 25 (1976), 359-365. MR 0410448 (53:14197)
  • [16] K. Takahashi, On the converse of the Fuglede-Putnam theorem, Acta Sci. Math. (Szeged) 43 (1981), 123-125. MR 621362 (82g:47018)
  • [17] J. P. Williams, Finite operators, Proc. Amer. Math. Soc. 26 (1970), 129-136. MR 0264445 (41:9039)
  • [18] T. Yoshino, Subnormal operators with a cyclic vector, Tôhoku Math. J. 21 (1969), 47-55. MR 0246145 (39:7450)
  • [19] T. Yoshino, Remarks on the generalized Putnam-Fuglede theorem, Proc. Amer. Math. Soc. 95 (1985), 571-572. MR 810165 (87i:47034)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B47, 47B10

Retrieve articles in all journals with MSC: 47B47, 47B10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1242091-2
Keywords: Normal derivation, nonnormal derivation, norm ideal, unitarily invariant norm, orthogonality results for derivations
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society