Operator ideals and operator spaces

Authors:
D. Benjamin Mathes and Vern I. Paulsen

Journal:
Proc. Amer. Math. Soc. **123** (1995), 1763-1772

MSC:
Primary 47D50; Secondary 46B28, 46L05, 47B10

MathSciNet review:
1242095

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that every full symmetrically normed ideal of operators on a Hilbert space is realizable as the set of completely bounded maps between two homogeneous operator Hilbert spaces, with the c.b. norm equivalent to (but in general not equal to) the symmetric norm. We show that one can have equality of the c.b. norm and the symmetric norm if one leaves the category of operator spaces and passes to a slightly larger category.

**[1]**David P. Blecher and Vern I. Paulsen,*Tensor products of operator spaces*, J. Funct. Anal.**99**(1991), no. 2, 262–292. MR**1121615**, 10.1016/0022-1236(91)90042-4**[2]**Edward G. Effros and Zhong-Jin Ruan,*On matricially normed spaces*, Pacific J. Math.**132**(1988), no. 2, 243–264. MR**934168****[3]**I. C. Gohberg and M. G. Kreĭn,*Introduction to the theory of linear nonselfadjoint operators*, Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. MR**0246142****[4]**Ben Mathes,*Characterizations of row and column Hilbert space*, J. London Math. Soc. (2)**50**(1994), no. 1, 199–208. MR**1277763**, 10.1112/jlms/50.1.199**[5]**Vern I. Paulsen,*Representations of function algebras, abstract operator spaces, and Banach space geometry*, J. Funct. Anal.**109**(1992), no. 1, 113–129. MR**1183607**, 10.1016/0022-1236(92)90014-A**[6]**Gilles Pisier,*The operator Hilbert space 𝑂𝐻, complex interpolation and tensor norms*, Mem. Amer. Math. Soc.**122**(1996), no. 585, viii+103. MR**1342022**, 10.1090/memo/0585**[7]**Zhong-Jin Ruan,*Subspaces of 𝐶*-algebras*, J. Funct. Anal.**76**(1988), no. 1, 217–230. MR**923053**, 10.1016/0022-1236(88)90057-2

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47D50,
46B28,
46L05,
47B10

Retrieve articles in all journals with MSC: 47D50, 46B28, 46L05, 47B10

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1995-1242095-X

Article copyright:
© Copyright 1995
American Mathematical Society