Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On spectral properties of perturbed operators

Author: M. Thamban Nair
Journal: Proc. Amer. Math. Soc. 123 (1995), 1845-1850
MSC: Primary 47A55; Secondary 47A75
MathSciNet review: 1242098
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Farid (1991) has given an estimate for the norm of a perturbation V required to obtain an eigenvector for the perturbed operator $ T + V$ within a given ball centered at a given eigenvector of the unperturbed (closed linear) operator T. A similar result is derived from a more general result of the author (1989) which also guarantees that the corresponding eigenvalue is simple and also that the eigenpair is the limit of a sequence obtained in an iterative manner.

References [Enhancements On Off] (What's this?)

  • [1] F. O. Farid and P. Lancaster, Spectral properties of diagonally dominant infinite matrices, Part I, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), 301-314. MR 1007527 (90h:47052)
  • [2] F. O. Farid, Spectral propereties of diagonally dominant infinite matrices, Part II, Linear Algebra Appl. 143 (1991), 7-17. MR 1077721 (91j:47029)
  • [3] -, Spectral properties of perturbed linear opeerators and their application to infinite matrices, Proc. Amer. Math. Soc. 112 (1991), 1013-1022. MR 1057943 (92b:47017)
  • [4] M. T. Nair, Approximation and localization of eigenelements, Ph.D. Thesis, I. I. T. Bombay, 1984.
  • [5] -, Approximation of spectral sets and spectral subspaces in Banach spaces, J. Indian Math. Soc. (N.S.) 54 (1989), 187-200. MR 1069270 (92b:47001)
  • [6] -, On iterative refinements for spectral sets and spectral subspaces, Numer. Funct. Anal. Optim. 10 (1989), 1019-1037. MR 1035655 (91b:47009)
  • [7] P. Rosenbloom, Perturbation of linear operators in Banach spaces, Arch. Math. 6 (1955), 89-101. MR 0068118 (16:832f)
  • [8] A. E. Taylor and D. C. Lay, Introduction to functional analysis, Wiley, New York, 1980. MR 564653 (81b:46001)
  • [9] G. W. Stewart, Error bounds for approximate invariant subspaces of closedlinear operators, SIAM J. Numer. Anal. 8 (1971), 796-808. MR 0293831 (45:2907)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A55, 47A75

Retrieve articles in all journals with MSC: 47A55, 47A75

Additional Information

Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society