On spectral properties of perturbed operators

Author:
M. Thamban Nair

Journal:
Proc. Amer. Math. Soc. **123** (1995), 1845-1850

MSC:
Primary 47A55; Secondary 47A75

MathSciNet review:
1242098

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Farid (1991) has given an estimate for the norm of a perturbation *V* required to obtain an eigenvector for the perturbed operator within a given ball centered at a given eigenvector of the unperturbed (closed linear) operator *T*. A similar result is derived from a more general result of the author (1989) which also guarantees that the corresponding eigenvalue is simple and also that the eigenpair is the limit of a sequence obtained in an iterative manner.

**[1]**F. O. Farid and P. Lancaster,*Spectral properties of diagonally dominant infinite matrices. I*, Proc. Roy. Soc. Edinburgh Sect. A**111**(1989), no. 3-4, 301–314. MR**1007527**, 10.1017/S0308210500018576**[2]**F. O. Farid and P. Lancaster,*Spectral properties of diagonally dominant infinite matrices. II*, Linear Algebra Appl.**143**(1991), 7–17. MR**1077721**, 10.1016/0024-3795(91)90003-F**[3]**F. O. Farid,*Spectral properties of perturbed linear operators and their application to infinite matrices*, Proc. Amer. Math. Soc.**112**(1991), no. 4, 1013–1022. MR**1057943**, 10.1090/S0002-9939-1991-1057943-2**[4]**M. T. Nair,*Approximation and localization of eigenelements*, Ph.D. Thesis, I. I. T. Bombay, 1984.**[5]**M. Thamban Nair,*Approximation of spectral sets and spectral subspaces in Banach spaces*, J. Indian Math. Soc. (N.S.)**54**(1989), no. 1-4, 187–200. MR**1069270****[6]**M. Thamban Nair,*On iterative refinements for spectral sets and spectral subspaces*, Numer. Funct. Anal. Optim.**10**(1989), no. 9-10, 1019–1037. MR**1035655**, 10.1080/01630568908816343**[7]**Paul Rosenbloom,*Perturbation of linear operators in Banach spaces*, Arch. Math. (Basel)**6**(1955), 89–101. MR**0068118****[8]**Angus Ellis Taylor and David C. Lay,*Introduction to functional analysis*, 2nd ed., John Wiley & Sons, New York-Chichester-Brisbane, 1980. MR**564653****[9]**G. W. Stewart,*Error bounds for approximate invariant subspaces of closed linear operators*, SIAM J. Numer. Anal.**8**(1971), 796–808. MR**0293831**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47A55,
47A75

Retrieve articles in all journals with MSC: 47A55, 47A75

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1242098-5

Article copyright:
© Copyright 1995
American Mathematical Society