Isomorphisms of standard operator algebras
Author:
Peter Šemrl
Journal:
Proc. Amer. Math. Soc. 123 (1995), 18511855
MSC:
Primary 47D30
MathSciNet review:
1242104
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let X and Y be Banach spaces, , and let and be standard operator algebras on X and Y, respectively. Assume that is a bijective mapping satisfying , where is a given positive real number (no linearity or continuity of is assumed). Then is a spatially implemented linear or conjugate linear algebra isomorphism. In particular, is continuous.
 [1]
J.
Aczél and J.
Dhombres, Functional equations in several variables,
Encyclopedia of Mathematics and its Applications, vol. 31, Cambridge
University Press, Cambridge, 1989. With applications to mathematics,
information theory and to the natural and social sciences. MR 1004465
(90h:39001)
 [2]
John
A. Baker, The stability of the cosine
equation, Proc. Amer. Math. Soc.
80 (1980), no. 3,
411–416. MR
580995 (81m:39015), http://dx.doi.org/10.1090/S00029939198005809953
 [3]
D.
G. Bourgin, Approximately isometric and multiplicative
transformations on continuous function rings, Duke Math. J.
16 (1949), 385–397. MR 0031194
(11,115e)
 [4]
Paul
R. Chernoff, Representations, automorphisms, and derivations of
some operator algebras, J. Functional Analysis 12
(1973), 275–289. MR 0350442
(50 #2934)
 [5]
D.
H. Hyers, The stability of homomorphisms and related topics,
Global analysis–analysis on manifolds, TeubnerTexte Math.,
vol. 57, Teubner, Leipzig, 1983, pp. 140–153. MR 730609
(86a:39004)
 [6]
Irving
Kaplansky, Ring isomorphisms of Banach algebras, Canadian J.
Math. 6 (1954), 374–381. MR 0062960
(16,49e)
 [7]
Irving
Kaplansky, Algebraic and analytic aspects of operator
algebras, American Mathematical Society, Providence, R.I., 1970.
Conference Board of the Mathematical Sciences Regional Conference Series in
Mathematics, No. 1. MR 0312283
(47 #845)
 [8]
Wallace
S. Martindale III, When are multiplicative mappings
additive?, Proc. Amer. Math. Soc. 21 (1969), 695–698. MR 0240129
(39 #1483), http://dx.doi.org/10.1090/S00029939196902401297
 [9]
C.
E. Rickart, Representations of certain Banach algebras on Hilbert
space, Duke Math. J. 18 (1951), 27–39. MR 0050807
(14,385f)
 [1]
 J. Aczél and J. Dhombres, Functional equations in several variables, Encyclopedia Math. Appl., vol. 31, Cambridge Univ. Press, Cambridge, 1989. MR 1004465 (90h:39001)
 [2]
 J. A. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc. 80 (1980), 411416. MR 580995 (81m:39015)
 [3]
 D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J. 16 (1949), 385397. MR 0031194 (11:115e)
 [4]
 P. R. Chernoff, Representations, automorphisms, and derivations of some operator algebras, J. Funct. Anal. 12 (1973), 275289. MR 0350442 (50:2934)
 [5]
 D. H. Hyers, The stability of homomorphisms and related topics, Global AnalysisAnalysis on Manifolds (Th. M. Rassias, ed.), TeubnerTexte Math., Teubner, Leipzig, 1983, pp. 140153. MR 730609 (86a:39004)
 [6]
 I. Kaplansky, Ring isomorphisms of Banach algebras, Canad. J. Math. 6 (1954), 374381. MR 0062960 (16:49e)
 [7]
 , Algebraic and analytic aspects of operator algebras, CBMS Regional Conf. Ser. in Math., Amer. Math. Soc., Providence, RI, 1970. MR 0312283 (47:845)
 [8]
 W. S. Martindale III, When are multiplicative mappings additive?, Proc. Amer. Math. Soc. 21 (1969), 695698. MR 0240129 (39:1483)
 [9]
 C. E. Rickart, Representations of certain Banach algebras on Hilbert space, Duke Math. J. 18 (1951), 2739. MR 0050807 (14:385f)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
47D30
Retrieve articles in all journals
with MSC:
47D30
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939199512421048
PII:
S 00029939(1995)12421048
Article copyright:
© Copyright 1995
American Mathematical Society
