Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Isomorphisms of standard operator algebras

Author: Peter Šemrl
Journal: Proc. Amer. Math. Soc. 123 (1995), 1851-1855
MSC: Primary 47D30
MathSciNet review: 1242104
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let X and Y be Banach spaces, $ \dim X = \infty $, and let $ \mathcal{A}$ and $ \mathcal{B}$ be standard operator algebras on X and Y, respectively. Assume that $ \phi :\mathcal{A} \to \mathcal{B}$ is a bijective mapping satisfying $ \left\Vert {\phi (AB) - \phi (A)\phi (B)} \right\Vert \leq \varepsilon ,A,B \in \mathcal{A}$, where $ \varepsilon $ is a given positive real number (no linearity or continuity of $ \phi $ is assumed). Then $ \phi $ is a spatially implemented linear or conjugate linear algebra isomorphism. In particular, $ \phi $ is continuous.

References [Enhancements On Off] (What's this?)

  • [1] J. Aczél and J. Dhombres, Functional equations in several variables, Encyclopedia Math. Appl., vol. 31, Cambridge Univ. Press, Cambridge, 1989. MR 1004465 (90h:39001)
  • [2] J. A. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc. 80 (1980), 411-416. MR 580995 (81m:39015)
  • [3] D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J. 16 (1949), 385-397. MR 0031194 (11:115e)
  • [4] P. R. Chernoff, Representations, automorphisms, and derivations of some operator algebras, J. Funct. Anal. 12 (1973), 275-289. MR 0350442 (50:2934)
  • [5] D. H. Hyers, The stability of homomorphisms and related topics, Global Analysis--Analysis on Manifolds (Th. M. Rassias, ed.), Teubner-Texte Math., Teubner, Leipzig, 1983, pp. 140-153. MR 730609 (86a:39004)
  • [6] I. Kaplansky, Ring isomorphisms of Banach algebras, Canad. J. Math. 6 (1954), 374-381. MR 0062960 (16:49e)
  • [7] -, Algebraic and analytic aspects of operator algebras, CBMS Regional Conf. Ser. in Math., Amer. Math. Soc., Providence, RI, 1970. MR 0312283 (47:845)
  • [8] W. S. Martindale III, When are multiplicative mappings additive?, Proc. Amer. Math. Soc. 21 (1969), 695-698. MR 0240129 (39:1483)
  • [9] C. E. Rickart, Representations of certain Banach algebras on Hilbert space, Duke Math. J. 18 (1951), 27-39. MR 0050807 (14:385f)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47D30

Retrieve articles in all journals with MSC: 47D30

Additional Information

Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society