Bounded point evaluations and polynomial approximation

Author:
James E. Thomson

Journal:
Proc. Amer. Math. Soc. **123** (1995), 1757-1761

MSC:
Primary 30E05; Secondary 30E10, 41A05, 46E15

MathSciNet review:
1242106

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the set of bounded point evaluations for polynomials with respect to the -norm for a measure. We give an example of a measure where the corresponding sets of bounded point evaluations vary with the exponent *p*. The main ingredient is the remarkable work of K. Seip on interpolating and sampling sequences for weighted Bergman spaces.

**[1]**John Akeroyd,*Polynomial approximation in the mean with respect to harmonic measure on crescents*, Trans. Amer. Math. Soc.**303**(1987), no. 1, 193–199. MR**896016**, 10.1090/S0002-9947-1987-0896016-X**[2]**James E. Brennan,*Invariant subspaces and weighted polynomial approximation*, Ark. Mat.**11**(1973), 167–189. MR**0350398****[3]**John B. Conway,*The theory of subnormal operators*, Mathematical Surveys and Monographs, vol. 36, American Mathematical Society, Providence, RI, 1991. MR**1112128****[4]**William W. Hastings,*A construction of Hilbert spaces of analytic functions*, Proc. Amer. Math. Soc.**74**(1979), no. 2, 295–298. MR**524303**, 10.1090/S0002-9939-1979-0524303-4**[5]**S. N. Mergeljan,*On the completeness of systems of analytic functions*, Amer. Math. Soc. Transl. (2)**19**(1962), 109–166. MR**0131561****[6]**Kristian Seip,*Regular sets of sampling and interpolation for weighted Bergman spaces*, Proc. Amer. Math. Soc.**117**(1993), no. 1, 213–220. MR**1111222**, 10.1090/S0002-9939-1993-1111222-5**[7]**Kristian Seip,*Beurling type density theorems in the unit disk*, Invent. Math.**113**(1993), no. 1, 21–39. MR**1223222**, 10.1007/BF01244300**[8]**James E. Thomson,*Approximation in the mean by polynomials*, Ann. of Math. (2)**133**(1991), no. 3, 477–507. MR**1109351**, 10.2307/2944317

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
30E05,
30E10,
41A05,
46E15

Retrieve articles in all journals with MSC: 30E05, 30E10, 41A05, 46E15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1242106-1

Article copyright:
© Copyright 1995
American Mathematical Society