Bounded point evaluations and polynomial approximation

Author:
James E. Thomson

Journal:
Proc. Amer. Math. Soc. **123** (1995), 1757-1761

MSC:
Primary 30E05; Secondary 30E10, 41A05, 46E15

DOI:
https://doi.org/10.1090/S0002-9939-1995-1242106-1

MathSciNet review:
1242106

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the set of bounded point evaluations for polynomials with respect to the -norm for a measure. We give an example of a measure where the corresponding sets of bounded point evaluations vary with the exponent *p*. The main ingredient is the remarkable work of K. Seip on interpolating and sampling sequences for weighted Bergman spaces.

**[1]**J. Akeroyd,*Polynomial approximation in the mean with respect to harmonic measure on crescents*, Trans. Amer. Math. Soc.**303**(1987), 193-199. MR**896016 (88f:30051)****[2]**J. Brennan,*Invariant subspaces and weighted polynomial approximation*, Ark. Mat.**11**(1973), 167-189. MR**0350398 (50:2891)****[3]**J. B. Conway,*The theory of subnormal operators*, Math. Surveys Monographs, vol. 36, Amer. Math. Soc., Providence, RI, 1991. MR**1112128 (92h:47026)****[4]**W. W. Hastings,*A construction in Hilbert spaces of analytic functions*, Proc. Amer. Math. Soc.**74**(1979), 295-298. MR**524303 (80f:46026)****[5]**S. N. Mergeljan,*On the completeness of systems of analytic functions*, Amer. Math. Soc. Transl. Ser. 2, vol. 19, Amer. Math. Soc., Providence, RI, 1962, pp. 109-166; Uspekhi Mat. Nauk**8**(1953), 3-63. MR**0131561 (24:A1410)****[6]**K. Seip,*Regular sets of sampling and interpolation for weighted Bergman spaces*, Proc. Amer. Math. Soc.**117**(1993), 213-220. MR**1111222 (93c:30051)****[7]**-,*Beurling type density theorems in the unit disk*, Invent. Math.**113**(1993), 21-39. MR**1223222 (94g:30033)****[8]**J. E. Thomson,*Approximation in the mean by polynomials*, Ann. of Math. (2)**133**(1991), 477-507. MR**1109351 (93g:47026)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
30E05,
30E10,
41A05,
46E15

Retrieve articles in all journals with MSC: 30E05, 30E10, 41A05, 46E15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1242106-1

Article copyright:
© Copyright 1995
American Mathematical Society