Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Bounded point evaluations and polynomial approximation

Author: James E. Thomson
Journal: Proc. Amer. Math. Soc. 123 (1995), 1757-1761
MSC: Primary 30E05; Secondary 30E10, 41A05, 46E15
MathSciNet review: 1242106
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the set of bounded point evaluations for polynomials with respect to the $ {L^P}$-norm for a measure. We give an example of a measure where the corresponding sets of bounded point evaluations vary with the exponent p. The main ingredient is the remarkable work of K. Seip on interpolating and sampling sequences for weighted Bergman spaces.

References [Enhancements On Off] (What's this?)

  • [1] J. Akeroyd, Polynomial approximation in the mean with respect to harmonic measure on crescents, Trans. Amer. Math. Soc. 303 (1987), 193-199. MR 896016 (88f:30051)
  • [2] J. Brennan, Invariant subspaces and weighted polynomial approximation, Ark. Mat. 11 (1973), 167-189. MR 0350398 (50:2891)
  • [3] J. B. Conway, The theory of subnormal operators, Math. Surveys Monographs, vol. 36, Amer. Math. Soc., Providence, RI, 1991. MR 1112128 (92h:47026)
  • [4] W. W. Hastings, A construction in Hilbert spaces of analytic functions, Proc. Amer. Math. Soc. 74 (1979), 295-298. MR 524303 (80f:46026)
  • [5] S. N. Mergeljan, On the completeness of systems of analytic functions, Amer. Math. Soc. Transl. Ser. 2, vol. 19, Amer. Math. Soc., Providence, RI, 1962, pp. 109-166; Uspekhi Mat. Nauk 8 (1953), 3-63. MR 0131561 (24:A1410)
  • [6] K. Seip, Regular sets of sampling and interpolation for weighted Bergman spaces, Proc. Amer. Math. Soc. 117 (1993), 213-220. MR 1111222 (93c:30051)
  • [7] -, Beurling type density theorems in the unit disk, Invent. Math. 113 (1993), 21-39. MR 1223222 (94g:30033)
  • [8] J. E. Thomson, Approximation in the mean by polynomials, Ann. of Math. (2) 133 (1991), 477-507. MR 1109351 (93g:47026)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30E05, 30E10, 41A05, 46E15

Retrieve articles in all journals with MSC: 30E05, 30E10, 41A05, 46E15

Additional Information

Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society