Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Approximating topological metrics by Riemannian metrics

Authors: Steven C. Ferry and Boris L. Okun
Journal: Proc. Amer. Math. Soc. 123 (1995), 1865-1872
MSC: Primary 53C23; Secondary 57N60, 57R12
MathSciNet review: 1246524
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the relation between (topological) inner metrics and Riemannian metrics on smoothable manifolds. We show that inner metrics on smoothable manifolds can be approximated by Riemannian metrics. More generally, if $ f:M \to X$ is a continuous surjection from a smooth manifold to a compact metric space with $ {f^{ - 1}}(x)$ connected for every $ x \in X$, then there is a metric d on X and a sequence of Riemannian metrics $ \{ {\psi _i}\} $ on M so that $ (M,{\psi _i})$ converges to (X, d) in Gromov-Hausdorff space. This is used to obtain a (fixed) contractibility function $ \rho $ and a sequence of Riemannian manifolds with $ \rho $ as contractibility function so that $ \lim (M,{\psi _i})$ is infinite dimensional. Using results of Dranishnikov and Ferry, this also gives examples of nonhomeomorphic manifolds M and N and a contractibility function $ \rho $ so that for every $ \varepsilon > 0$ there are Riemannian metrics $ {\phi _\varepsilon }$ and $ {\psi _\varepsilon }$ on M and N so that $ (M,{\phi _\varepsilon })$ and $ (N,{\psi _\varepsilon })$ have contractibility function $ \rho $ and $ {d_{GH}}((M,{\phi _\varepsilon }),(N,{\psi _\varepsilon })) < \varepsilon $.

References [Enhancements On Off] (What's this?)

  • [Be] M. Bestvina, Characterizing k-dimensional universal Menger compacta, Mem. Amer. Math. Soc., vol. 71, Amer. Math. Soc., Providence, RI, 1988. MR 920964 (89g:54083)
  • [B] R. H. Bing, Partitioning continuous curves, Bull. Amer. Math. Soc. 58 (1952), 536-556. MR 0049550 (14:192e)
  • [C] M. Cassorla, Approximating compact inner metric spaces by surfaces, Indiana Univ. Math. J. 41 (1992), 505-513. MR 1183356 (93i:53042)
  • [D] A. N. Dranishnikov, On resolutions of $ L{C^n}$-compacta, Shape Theory and Geometric Topology (S. Mardesic and J. Segal, eds.), Lecture Notes in Math., vol. 1283, Springer-Verlag, Berlin and New York, 1987, pp. 48-59. MR 922271 (89g:54084)
  • [DF] A. N. Dranishnikov and S. C. Ferry, Cell-like images of topological manifolds and limits of manifolds in Gromov-Hausdorff space, preprint.
  • [DFW] A. N. Dranishnikov, S. Ferry, and S. Weinberger, Large Riemannian manifolds which are flexible, preprint. MR 1983785 (2004b:53058)
  • [DW] J. Dydak and J. J. Walsh, Infinite dimensional compacta having cohomological dimension two: An application of the Sullivan Conjecture, Topology 32 (1993), 93-104. MR 1204409 (94b:55002)
  • [F] S. Ferry, Constructing $ U{V^k}$-maps between spheres, Proc. Amer. Math. Soc. 120 (1994), 329-332. MR 1166355 (94b:57029)
  • [G] M. Gromov, Large Riemannian manifolds, Lecture Notes in Math., vol. 1201, Springer-Verlag, Berlin and New York, 1986, pp. 108-122. MR 859578 (87k:53091)
  • [KS] R. Kirby and L. C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Princeton Univ. Press, Princeton, NJ, 1977. MR 0645390 (58:31082)
  • [L] R. C. Lacher, Cell-like mappings and their generalizations, Bull. Amer. Math. Soc. 83 (1977), 495-552. MR 0645403 (58:31095)
  • [Mo] T. Moore, Gromov-Hausdorff convergence to non-manifolds, J. Geometric Anal. (to appear).
  • [P] P. Peterson, V, A finiteness theorem for metric spaces, J. Differential Geom. 31 (1990), 387-395. MR 1037407 (91d:53070)
  • [S] S. Smale, A Vietoris mapping theorem for homotopy, Proc. Amer. Math. Soc. 8 (1957), 604-610. MR 0087106 (19:302f)
  • [W] J. Walsh, Isotoping mappings to open mappings, Trans. Amer. Math. Soc. 250 (1979), 121-145. MR 530046 (80m:57008)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C23, 57N60, 57R12

Retrieve articles in all journals with MSC: 53C23, 57N60, 57R12

Additional Information

Keywords: Riemannian manifold, length space, cell-like map
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society