A NEW DUALITY THEOREM FOR SEMISIMPLE MODULES AND CHARACTERIZATION OF VILLAMAYOR RINGS

CARL FAITH AND PERE MENAL

(Communicated by Lance W. Small)

Abstract. We prove the theorem: If \(R \) is a ring whose right ideals satisfy the double annihilator condition with respect to a semisimple right \(R \)-module \(W \), then every right ideal is an intersection of maximal right ideals, consequently \(R \) is a right \(V \) (for Villamayor) ring, and \(W \) is then necessarily a cogenerator of \(\text{mod-} R \). (The converse is well known.) We use this to give a new proof of a theorem of ours on right Johns rings.

Introduction

A ring \(R \) is a right \(V \) ring provided that \(R \) satisfies the f.e.c.'s:

(V1) Every simple right \(R \)-module is injective.
(V2) Every right ideal \(I \) of \(R \) is an intersection of maximal right ideals, equivalently, \(R/I \) has zero Jacobson radical, i.e., \(\text{rad}(R/I) = 0 \).
(V3) Every right \(R \)-module \(M \) has zero Jacobson radical, i.e., \(\text{rad} M = 0 \).

Proof. See [F1], p. 356, Proposition 7.32A. \(\square \)

If \(W \) is a right \(R \)-module, we say that \(W \) satisfies the double annihilator condition (= d.a.c.) with respect to right ideals provided that

\[
I = \text{ann}_R \text{ann}_W I
\]

where \(\text{ann}_W S \) denotes the annihilator of a subset \(S \) of \(R \) in \(W \), and dually for \(\text{ann}_R S \) for a subset \(S \) of \(W \).

A characterization of \(V \)-rings

We now state the new characterization of \(V \)-rings.

\(V \)-Ring Theorem. A ring \(R \) is a right \(V \)-ring iff some semisimple right \(R \)-module satisfies the d.a.c. with respect to right ideals.

Proof. Sufficiency. It suffices to prove that every right ideal of \(I \) of \(R \) is the intersection of maximal right ideals. Let \(M = \text{ann}_W I \). Then by the d.a.c.

\[
I = \bigcap_{m \in M} \text{ann}_R m.
\]
Since \(mR \) is a semisimple \(R \)-submodule of finite length, then

\[mR = v_1R \oplus \cdots \oplus v_nR \]

where \(v_i \in W \) and \(v_iR \) is simple, \(i = 1, \ldots, n \). Write

\[m = v_1a_1 + \cdots + v_na_n \]

where \(a_i \in R \), \(i = 1, \ldots, n \); and let

\[H = \bigcap_{i=1}^n \text{ann}_R v_i a_i. \]

We assert that

\[H = \text{ann}_R m \]

is the intersection of maximal right ideals. For if \(v_ia_i \neq 0 \), then \(v_ia_iR = v_iR \)

is simple, and since

\[v_iR \cong R/(\text{ann}_R v_i a_i), \]

then \(\text{ann}_R v_ia_i \) is a maximal right ideal, hence \(H \) is the intersection of maximal right ideals.

Next we show that (5) holds. Obviously, \(\text{ann}_R m \supseteq H \). To prove the reverse inclusion, note that if \(r \in \text{ann}_R m \), then

\[v_1a_1r + \cdots + v_na_nr = 0. \]

By (2), then \(v_ia_ir = 0 \), hence \(r \in \text{ann}_R v_ia_i \) for all \(i \), that is, \(r \in H \), so (5) holds.

Since (4) is the intersection of maximal right ideals, then so is \(\text{ann}_R m \), whence \(I \) by (1).

\textbf{Necessity.} If \(R \) is a right \(V \)-ring, then the direct sum \(W \) of a complete isomorphic set of simple right \(R \)-modules is a minimal cogenerator of \(\text{mod-R} \).

(See, e.g., [F1], p. 167, Proposition 3.55. There is a misprint in this proposition; cf. [F2].) Furthermore, every cogenerator \(W \) satisfies the d.a.c. with respect to right ideals. (Hint: if \(I \) is a right ideal, then \(R/I \) embeds in a direct product \(W^a \) of copies of \(W \), say \(h : R/I \hookrightarrow W^a \). If \(h(1+I) = (w_i) \in W^a \), then \(I = \text{ann}_R \{w_i\}_{i \in a} \).)

\textbf{Corollary.} If a ring \(R \) satisfies the d.a.c. with respect to a semisimple right \(R \)-module \(W \), then \(W \) is a right cogenerator of \(R \).

\textit{Proof.} \(R \) is a right \(V \)-ring, so every simple right \(R \)-module \(V \) is injective, so it suffices to show that \(W \) contains a copy of each such \(V \). But \(V \cong R/M \), where \(M \subset R \), and by the d.a.c., \(M = \text{ann}_R w \) for some \(w \in W \). Since \(wR \cong V \), we have \(V \hookrightarrow W \) as needed.

\textbf{F-M Theorem 2.3 ([F-M1]).} If \(R \) is a right Johns ring (= right Noetherian and every right ideal is a right annihilator), then \(R/J \) is a right \(V \)-ring, where \(J \) is the Jacobson radical.

\textit{Proof.} Let \(W = \text{soc} R \). Then

\[J = \overset{\perp}{W} = \overset{\perp}{W} \]

is nilpotent and

\[W = J^\perp = \overset{\perp}{J} \]
where "⊥" denotes an annihilator in R on the appropriate side. (See [F-M], Lemma 2.2.)

By the fact that R_R satisfies the d.a.c. with respect to right ideals, and using (*) and (**), one sees that right ideals of R containing J, hence right ideals of R/J, satisfy the d.a.c. with respect to the semisimple module W. Then by the V-Ring Theorem, we see that R/J is a right V-ring.

Corollary. If R is such that $W = \perp J$ is a semisimple right R-module and every right ideal containing J is a right annihilator, then R/J is a right V-ring.

Acknowledgment

We wish to acknowledge P. M. Cohn for raising a question about the proof of Theorem 2.3, in connection with his reviewing [F-M1], namely, given a finitely embedded (= f.e.) module M (= has finite essential socle) that occurs in the proof, and given an embedding of M in a direct product S^n of copies of a module ($S = \text{soc } R_R$ in the proof), how does one conclude that M embeds in a finite product S^n of copies of S? This can be resolved as follows. Let $\{p_i\}_{i \in \alpha}$ denote the set of projections $S^\alpha \to S$ of the product S^α. Since $\bigcap_{i \in \alpha} \ker p_i = 0$, and since M is f.e., then for some finite subset p_i, \ldots, p_{n_i} of the induced maps $p_i : M \to S$ we have $\bigcap_{i=1}^n \ker p_i = 0$. But then the direct sum of the $\{p_i\}_{i=1}^n$ is an embedding $M \to S^n$.

References

Department of Mathematics, Rutgers University New Brunswick, New Jersey 08903

Permanent address: 199 Longview Drive, Princeton, New Jersey 08540