Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A new duality theorem for semisimple modules and characterization of Villamayor rings

Authors: Carl Faith and Pere Menal
Journal: Proc. Amer. Math. Soc. 123 (1995), 1635-1637
MSC: Primary 16E50
MathSciNet review: 1254836
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the theorem: If R is a ring whose right ideals satisfy the double annihilator condition with respect to a semisimple right R-module W, then every right ideal is an intersection of maximal right ideals, consequently R is a right V (for Villamayor) ring, and W is then necessarily a cogenerator of $ \bmod$-$ R$. (The converse is well known.) We use this to give a new proof of a theorem of ours on right Johns rings.

References [Enhancements On Off] (What's this?)

  • [F1] C. Faith, Algebra I: Rings, modules and categories, Grundlehren Math. Wiss., Bd. 190, Springer-Verlag, Berlin, Heidelberg, and New York, 1973 (corrected reprint, 1981). MR 623254 (82g:16001)
  • [F2] -, Minimal cogenerators over Osofsky and Camillo rings, preprint, 1993.
  • [F-M1] C. Faith and Pere Menal, A counter-example to a conjecture of Johns, Proc. Amer. Math. Soc. 116 (1992), 21-26. MR 1100651 (92k:16033)
  • [F-M2] -, The structure of Johns rings, Proc. Amer. Math. Soc. 120 (1994), 1071-1081. MR 1231294 (94j:16036)
  • [P] C. Perelló (ed.), Pere Menal memorial volumes, Publ. Mat. 36 (1992).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16E50

Retrieve articles in all journals with MSC: 16E50

Additional Information

Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society