Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Carleman inequalities for the Dirac operator and strong unique continuation


Author: Yonne Mi Kim
Journal: Proc. Amer. Math. Soc. 123 (1995), 2103-2112
MSC: Primary 35B60; Secondary 35Q40
DOI: https://doi.org/10.1090/S0002-9939-1995-1242093-6
MathSciNet review: 1242093
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using a Carleman inequality, we prove a strong unique continuation theorem for the Schrödinger operator $ D + V$, where D is the Dirac operator and V is a potential function in some $ {L^p}$ space.


References [Enhancements On Off] (What's this?)

  • [1] S. Alinhac and M. S. Baouendi, Uniqueness for the characteristic Cauchy problem and strong unique continuation for high order P.D.E., Amer. J. Math. 102 (1980). MR 556891 (81e:35003)
  • [2] T. Carleman, Sur un problèm d'unicité pour les systèmes d'èquations aux derivées partielles à deux variables indépendantes, Ark. Mat. 26B (1939), 1-9.
  • [3] L. Hörmander, Uniqueness theorems for second order elliptic partial differential equations, Comm. Partial Differential Equations 8 (1983), 21-63. MR 686819 (85c:35018)
  • [4] D. Jerison, Carleman inequalities for the Dirac and Laplace operators and unique continuation, Adv. Math. 62 (1986). MR 865834 (88b:35218)
  • [5] D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. of Math. (2) 121 (1985). MR 794370 (87a:35058)
  • [6] C. E. Kenig, Uniform Sobolev inequalities for second order differential operators and unique continuation theorem, Internat. Congr. Math., 1986.
  • [7] B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 447-526. MR 670130 (86b:81001a)
  • [8] C. Sogge, Oscillatory integrals and spherical harmonics, Thesis, Princeton University, Princeton, NJ, 1985. MR 835795 (87g:42026)
  • [9] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, NJ, 1970. MR 0290095 (44:7280)
  • [10] M. E. Taylor, Pseudo differential operators, Princeton Univ. Press, Princeton, NJ, 1981.
  • [11] P. Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. (N.S.) 81 (1975), 477-478. MR 0358216 (50:10681)
  • [12] T. Wolff, Note on counter examples in strong unique continuation problems, Proc. Amer. Math. Soc. 114 (1992), 351-356. MR 1014648 (92e:35040)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35B60, 35Q40

Retrieve articles in all journals with MSC: 35B60, 35Q40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1242093-6
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society