ON POLYNOMICALLY BOUNDED OPERATORS
WITH RICH SPECTRUM

RADU GADIDOV

(Communicated by Palle E. T. Jorgensen)

Abstract. D. Westood (J. Funct. Anal. 66 (1986), 96–104) proved that \(C_{00} \)-contractions with dominating spectrum are in \(A_{W_0} \). We generalize this result to polynomially bounded operators.

1. Introduction

Let \(\mathcal{H} \) be a complex, separable, infinite dimensional Hilbert space, and let \(\mathcal{B}(\mathcal{H}) \) be the algebra of all bounded, linear operators on \(\mathcal{H} \). Recall that an operator \(T \in \mathcal{B}(\mathcal{H}) \) is called polynomially bounded (notation \(T \in (PB)(\mathcal{H}) \)) if there exists a constant \(K \geq 1 \) such that for every polynomial \(p \),

\[
\|p(T)\| \leq K \sup\{|p(z)| : |z| = 1\}.
\]

Of course, all contraction operators in \(\mathcal{B}(\mathcal{H}) \) are polynomially bounded, and in the past fifteen years the theory of dual algebras generated by a single contraction operator has been used very succesfully to obtain information about the structure of such operators (see for example [1], [2], [5], [6]). More recently (cf. [11], [12], [13], [15], etc.), researchers have begun to use the theory of dual algebras generated by an arbitrary polynomially bounded operator to extract structural information about such operators. As was pointed out in [11], however, many parts of the theory for contraction operators do not readily generalize to the case of polynomially bounded operators. The purpose of this note is to make a modest contribution to this theory, by proving a generalization (Theorem 2 below) of the main result in [16] and one of the results in [11]. Before stating Theorem 2, we recall some notation and definitions from this theory.

If \(T \) is in \(\mathcal{B}(\mathcal{H}) \) and \(\mathcal{M} \) is a (closed) subspace of \(\mathcal{H} \), then \(T_{\mathcal{M}} \) denotes the compression of \(T \) to \(\mathcal{M} \), i.e., \(T_{\mathcal{M}} = P_{\mathcal{M}} T P_{\mathcal{M}} \), where \(P_{\mathcal{M}} \) denotes the orthogonal projection from \(\mathcal{H} \) onto \(\mathcal{M} \). Also the spectrum of \(T \), the point spectrum of \(T \) and the essential spectrum of \(T \) will be denoted by \(\sigma(T) \), \(\sigma_p(T) \) and \(\sigma_e(T) \), respectively. Moreover, \(C_{00}(\mathcal{H}) \) is the set of all operators \(T \) in \(\mathcal{B}(\mathcal{H}) \) such that the sequences \(\{T^n\}_{n=1}^{\infty} \), \(\{T^* n\}_{n=1}^{\infty} \) converge to 0 in the strong operator topology on \(\mathcal{B}(\mathcal{H}) \).

Received by the editors August 23, 1993 and, in revised form, October 27, 1993.

1991 Mathematics Subject Classification. Primary 47A15; Secondary 47A60.

©1995 American Mathematical Society
It is well known (cf. [9]) that $\mathcal{B}(\mathcal{H})$ is the dual space of the Banach space $\mathcal{C}(\mathcal{H})$ of trace-class operators on \mathcal{H} equipped with the trace-norm $\| \|_1$, and the duality is implemented by the bilinear form $\langle T, L \rangle = \text{trace}(TL)$, $T \in \mathcal{B}(\mathcal{H})$, $L \in \mathcal{C}(\mathcal{H})$. If T is an operator in $\mathcal{B}(\mathcal{H})$, \mathcal{A}_T will denote the dual algebra generated by T (i.e., the smallest weak*-closed algebra containing T and the identity operator on \mathcal{H}), $\mathcal{E}_T (= \mathcal{C}_1 / \mathcal{A}_T$) the natural predual of \mathcal{A}_T. For any $L \in \mathcal{C}(\mathcal{H})$ the corresponding element in \mathcal{E}_T will be denoted by $[L]_T$. In particular, for any vectors x and y in \mathcal{H}, $[x \otimes y]_T$ is the image in \mathcal{E}_T of $x \otimes y$, where $x \otimes y$ denotes the usual rank one operator in $\mathcal{B}(\mathcal{H})$.

As usual D denotes the open unit disc in \mathbb{C}, and $T = \partial D$. If E is a measurable subset of T (with respect to normalized Lebesgue measure m on T), a set $\Lambda \subset D$ is said to be dominating for E if almost every point of E is a nontangential limit of a sequence of points from Λ, and the set of all nontangential limits of Λ on T will be denoted by $\text{NTL}(\Lambda)$. The spaces $\mathcal{L}^1 := \mathcal{L}^1(T)$, $\mathcal{H}^1 := \mathcal{H}^1(T)$ and $\mathcal{H}^\infty := \mathcal{H}^\infty(T)$ are the usual Lebesgue and Hardy function spaces on T, relative to the measure m. It is easy to see that if $T \in (PB)(\mathcal{H})$, there exists a smallest number M such that (1) is valid for every polynomial p, and we denote the set of all $T \in (PB)(\mathcal{H})$ for which M is the smallest such number by $(PB)^M(\mathcal{H})$ (cf. [11]). If $T \in (PB)^M(\mathcal{H})$, it is easy to see that for any pair of vectors x and y in \mathcal{H} there exists a measure $\mu_{x,y}$ on T such that for every polynomial p,

\begin{equation}
\langle p(T)x, y \rangle = \int_T pd\mu_{x,y},
\end{equation}

and the operator T is called absolutely continuous (notation $T \in (ACPB)^M(\mathcal{H})$) if for every pair x, y in \mathcal{H} there exists an absolutely continuous measure $\mu_{x,y}$ satisfying (2) (with respect to m).

For absolutely continuous polynomially bounded operators it is well known (cf. [11]) that there exists a unique unital, norm continuous algebra homomorphism

$$\Phi_T : \mathcal{H}^\infty \to \mathcal{A}_T$$

onto a weak* dense subalgebra of \mathcal{A}_T such that Φ_T extends the Riesz-Dunford functional calculus, Φ_T is continuous if both \mathcal{H}^∞ and \mathcal{A}_T are given their weak* topologies, and Φ_T is the adjoint of a bounded, linear, one to one map

$$\phi_T : \mathcal{E}_T \to \mathcal{L}^1 / \mathcal{H}^1_0.$$

Let us also recall (cf. [11]) that the class $\mathcal{A}^M(\mathcal{H})$ is the set of all $T \in (ACPB)^M(\mathcal{H})$ for which Φ_T is bounded below. In this case Φ_T is also a weak* homeomorphism between \mathcal{H}^∞ onto \mathcal{A}_T, when \mathcal{H}^∞ and \mathcal{A}_T are given their weak* topologies, and ϕ_T is onto.

For any f in \mathcal{L}^1, $[f]_{\mathcal{L}^1 / \mathcal{H}^1_0}$ denotes the image of f in $\mathcal{L}^1 / \mathcal{H}^1_0$ under the canonical projection from \mathcal{L}^1 onto $\mathcal{L}^1 / \mathcal{H}^1_0$. If $\lambda \in D$ and P_λ is the associated Poisson kernel on T (i.e., $P_\lambda(t) := \frac{(1-|\lambda|^2)}{|1-\lambda e^{it}|^2}$), we write

$$[C_\lambda]_T = \phi_T^{-1}([P_\lambda]_{\mathcal{L}^1 / \mathcal{H}^1_0}),$$

and it is easy to check that for any function h in \mathcal{H}^∞,

$$\langle \Phi_T(h), [C_\lambda]_T \rangle = h(\lambda).$$
If \(T \in \mathcal{A}^M(\mathcal{H}) \), then, as is customary, \(\mathcal{E}_0(\mathcal{A}_T) \) denotes the set of all \([L]_T \) in \(\mathcal{E}_T \) for which there exist sequences \(\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty} \) in the unit ball of \(\mathcal{H} \) such that

\[
\begin{align*}
&\text{(i) } \lim_{n \to \infty} \|[L]_T - [x_n \otimes y_n]_T\| = 0, \text{ and} \\
&\text{(ii) } \lim_{n \to \infty} (\|[x_n \otimes w]_T\| + \|[w \otimes y_n]_T\|) = 0 \text{ for any } w \in \mathcal{H},
\end{align*}
\]

and \(\mathcal{A}^M(\mathcal{H}) \) has property \(\mathcal{E}_{0,\theta} \) (\(\theta \in (0, 1] \)) if \(\mathcal{E}_0(\mathcal{A}_T) \) (which is (cf. [4]) absolutely convex and norm closed) contains the closed ball in \(\mathcal{E}_T \) centered at 0 with radius \(\theta \).

The following result comes from [11], and will be needed in the sequel.

Lemma 1. Let \(T \in \mathcal{A}^M(\mathcal{H}) \cap C_{00}(\mathcal{H}) \).

(i) If \(\{x_n\}_{n=1}^{\infty} \) is a sequence of vectors converging weakly to 0, then for any vector \(z \in \mathcal{H} \),

\[
\lim_{n \to \infty} (\|[x_n \otimes z]_T\| + \|[z \otimes x_n]_T\|) = 0.
\]

(ii) If \(\lambda \in \sigma_e(T) \cap D \), then \([C\lambda]_T \in \mathcal{E}_0(\mathcal{A}_T) \).

Finally, we write, as is customary, \(\mathcal{A}^M_{N_0}(\mathcal{H}) \) for the set of those operators \(T \) in \(\mathcal{A}^M(\mathcal{H}) \) such that for any doubly indexed sequence \(\{[L_{ij}]_T\}_{i,j=1}^{\infty} \) of elements of \(\mathcal{E}_T \), there exist sequences \(\{x_i\}_{i=1}^{\infty} \) and \(\{y_j\}_{j=1}^{\infty} \) of vectors in \(\mathcal{H} \) such that

\[
[L_{ij}]_T = [x_i \otimes y_j]_T, \quad 1 \leq i, \ 1 \leq j.
\]

Now we may state the main result of this note.

Theorem 2. Let \(T \in (PB)^M(\mathcal{H}) \cap C_{00}(\mathcal{H}) \) be such that \(\sigma(T) \cap D \) dominates \(T \). Then \(T \in \mathcal{A}^M_{N_0}(\mathcal{H}) \).

2. The details

In this section we prove Theorem 2.

Since for any function \(h \in \mathcal{H}^\infty \), \(h(\sigma(T) \cap D) \subset \sigma(\Phi_T(h)) \), it follows that \(\Phi_T \) is bounded below, so \(T \in \mathcal{A}^M(\mathcal{H}) \). Thus by Theorem 3.7 of [2] it is sufficient to show that \(\mathcal{A}_T \) has property \(\mathcal{E}_{0,\theta} \) for some \(\theta \in (0, 1] \). The following lemma is the main ingredient in showing this.

Lemma 3. Suppose \(\epsilon, \delta \) are positive numbers, \(f \) is a nonnegative function in \(L^1 \), and \(\{y_j\}_{j=1}^{p} \) is a finite sequence of vectors in \(\mathcal{H} \). Then there exists \(x \in \mathcal{H} \) such that

\[
\begin{align*}
&\text{(i) } \|\phi_T^{-1}([f]_{L^1}^{H^0}) - [x \otimes x]_T\| < \epsilon, \\
&\text{(ii) } \|x\| \leq 2 \|f\|_1^{1/2}, \quad \|[x \otimes y_j]_T\| + \|[y_j \otimes x]_T\| < \delta, \quad j = 1, \ldots, p.
\end{align*}
\]

Proof. Define \(\Gamma_1 = (\sigma_p(T) \setminus \sigma_e(T)) \cap D \), \(\Gamma_2 = (\sigma(T) \setminus (\sigma_p(T) \cup \sigma_e(T))) \cap D \), \(\Gamma_3 = NTL(\sigma_e(T)) \), and \(\tilde{\Gamma}_1 = NTL(\Gamma_1) \), \(\tilde{\Gamma}_2 = NTL(\Gamma_2) \), and \(\tilde{\Gamma}_3 = NTL(\sigma_e(T) \cap D) \). First we consider \(f\chi_{\Gamma_1} \). By Lemma 1.2 of [3], there exist a finite sequence of positive numbers \(\{\alpha_j\}_{j=1}^{n_1} \) and a finite sequence \(\{\lambda_j\}_{j=1}^{n_1} \) of distinct points in \(\Gamma_1 \), such that

\[
\sum_{j=1}^{n_1} \alpha_j^{(1)} \leq \|f\chi_{\Gamma_1}\|_1
\]
and

\[\|f_{X_{1}} - \sum_{j=1}^{n_1} \alpha_j^{(1)} P_{\alpha_j^{(1)}}\|_1 < \varepsilon/5. \]

For each \(j \) choose a vector of norm one \(x_j^{(1)} \in \ker(\lambda_j^{(1)} - T) \), and define
\[\mathcal{H}_1 = \text{span}\{x_j^{(1)}\}_{j=1}^{n_1}. \]
Then \(\mathcal{H}_1 \in \text{Lat}(T) \), and by the choice of the sequence \(\{\lambda_j^{(1)}\}_{j=1}^{n_1} \), the set \(\{x_j^{(1)}\}_{j=1}^{n_1} \) is linearly independent. So \(\dim \mathcal{H}_1 = n_1 \), and \(T_{\mathcal{H}_1} \) has the eigenvectors \(\{x_j^{(1)}\}_{j=1}^{n_1} \) corresponding to the distinct eigenvalues \(\{\lambda_j^{(1)}\}_{j=1}^{n_1} \). Therefore by Theorem 2.2 of [16] there exists \(x^{(1)} \) in \(\mathcal{H}_1 \) with

\[\|x^{(1)}\| \leq \|f_{X_{1}}\|^{1/2} \]

such that

\[[x^{(1)} \otimes x^{(1)}]_T = \sum_{j=1}^{n_1} \alpha_j^{(1)} [C_{\lambda_j^{(1)}}]_{T}. \]

Hence by (3),

\[\|\phi^{-1}_T([f_{X_{1}}]_{L^1(H)}) - [x^{(1)} \otimes x^{(1)}]_T\| < \varepsilon/5. \]

Since \(\mathcal{H}_1 \) is finite dimensional and invariant for \(T \),

\[T_{\mathcal{H}_1} \in (ACPB)^{M}(\mathcal{H} \otimes \mathcal{H}_1), \]

\(\sigma(T_{\mathcal{H}_1}) \cap \mathcal{D} \) dominates \(T \), \(\Gamma_1 \setminus \{\lambda_j^{(1)}\}_{j=1}^{n_1} \subset (\sigma_{p}(T_{\mathcal{H}_1}) \setminus \sigma_{r}(T_{\mathcal{H}_1})) \), and \(NTL(\Gamma_1 \setminus \{\lambda_j^{(1)}\}_{j=1}^{n_1}) = \tilde{\Gamma}_1 \). By the same argument as above (applied to \(T_{\mathcal{H}_1} \)), one can find a finite sequence of positive numbers \(\{\alpha_j^{(2)}\}_{j=1}^{n_2} \), a finite sequence \(\{\lambda_j^{(2)}\}_{j=1}^{n_2} \) of distinct points in \(\Gamma_1 \setminus \{\lambda_j^{(1)}\}_{j=1}^{n_1} \), and a vector \(x^{(2)} \) in \(\mathcal{H} \otimes \mathcal{H}_1 \) such that

\[\|f_{X_{1}} - \sum_{j=1}^{n_2} \alpha_j^{(2)} P_{\lambda_j^{(2)}}\|_1 < \varepsilon/5, \]

\[[x^{(2)} \otimes x^{(2)}]_{T_{\mathcal{H}_1}} = \sum_{j=1}^{n_2} \alpha_j^{(2)} [C_{\lambda_j^{(2)}}]_{T_{\mathcal{H}_1}}, \]

and

\[\|x^{(2)}\| \leq \|f_{X_{1}}\|^{1/2}. \]

Since \(\mathcal{H}_1 \) is invariant for \(T \), by (5) it follows that

\[[x^{(2)} \otimes x^{(2)}]_T = \sum_{j=1}^{n_2} \alpha_j^{(2)} [C_{\lambda_j^{(2)}}]_{T}, \]

and taking into account (4), we obtain

\[\|\phi^{-1}_T([f_{X_{1}}]_{L^1(H)}) - [x^{(2)} \otimes x^{(2)}]_T\| < \varepsilon/5. \]

One can thus find by induction an orthogonal sequence \(\{x^{(n)}\}_{n=1}^{\infty} \) such that for any positive integer \(n \),

\[\|x^{(n)}\| \leq \|f_{X_{1}}\|^{1/2}. \]
ON POLYNOMIALLY BOUNDED OPERATORS WITH RICH SPECTRUM

and
\[\|\phi_T^{-1}([f x_{\Gamma_1} L y_{H_0}] - [x^{(n)} \otimes x^{(n)}])\| < \epsilon/5. \]

If M is large enough, \(y^{(1)} := x^{(M)} \) satisfies the inequalities
\[\|\phi_T^{-1}([f x_{\Gamma_1} L y_{H_0}] - [y^{(1)} \otimes y^{(1)}])\| < \epsilon/5, \]
\[\|y^{(1)}\| \leq \|f x_{\Gamma_1}\|^{1/2}, \|([y^{(1)} \otimes y^{(1)})_T]\| + \|y_j \otimes y^{(1)}\| < \delta/4, \quad j = 1, \ldots, p. \]

By a similar argument as above (applied to \(f x_{\Gamma_2 \setminus \Gamma_1} \)) one can obtain a vector \(y^{(2)} \) such that
\[\|\phi_T^{-1}([f x_{\Gamma_2 \setminus \Gamma_1} L y_{H_0}] - [y^{(2)} \otimes y^{(2)}])\| < \epsilon/5, \]
\[\|y^{(2)}\| \leq \|f x_{\Gamma_2 \setminus \Gamma_1}\|^{1/2}, \]
\[\|([y^{(1)} \otimes y^{(2)})_T]\| + \|y^{(2)} \otimes y^{(1)}\| < \epsilon/5, \]
and
\[\|y_j \otimes y^{(1)}\| + \|y^{(1)} \otimes y^{(2)}\| < \delta/4, \quad j = 1, \ldots, p. \]

Putting together (6)-(11), we get
\[\|y^{(1)} + y^{(2)}\| \leq 2^{1/2} \|f x_{\Gamma_1 \cup \Gamma_2}\|^{1/2}, \]
\[\|([y^{(1)} + y^{(2)})_T]\| + \|y_j \otimes (y^{(1)} + y^{(2)})\| < \delta/2, \quad j = 1, \ldots, p, \]
and
\[\|\phi_T^{-1}([f x_{\Gamma_1 \cup \Gamma_2} L y_{H_0}] - [(y^{(1)} + y^{(2)}) \otimes (y^{(1)} + y^{(2)})]\| < 4\epsilon/5. \]

Now we concentrate on \(f x_{T \setminus (\Gamma_1 \cup \Gamma_2)} \). Since \(\sigma_e(T) \cap D \) dominates \(T \setminus (\Gamma_1 \cup \Gamma_2) \), again by Lemma 1.2 of [3] one can find a finite sequence of positive numbers \(\alpha_k \) \(k = 1, \ldots, L \), and a finite sequence \(\lambda_k \) \(k = 1, \ldots, L \), such that
\[\sum_{k=1}^L \alpha_k \leq \|f x_{T \setminus (\Gamma_1 \cup \Gamma_2)}\|, \]
and
\[\|\phi_T^{-1}([f x_{T \setminus (\Gamma_1 \cup \Gamma_2)} L y_{H_0}] - \sum_{k=1}^L \alpha_k [C_{\lambda_k}]_T\| < \epsilon/20. \]

For each \(k \in \{1, \ldots, L\} \) let \(\{x_n^{(k)}\}_{n=1}^{\infty} \) be a sequence of vectors in the unit ball of \(\mathcal{H} \), converging weakly to \(0 \) such that
\[\lim_{n \to \infty} \|([C_{\lambda_k}]_T - [x_n^{(k)} \otimes x_n^{(k)}])_T\| = 0. \]

By a standard argument (since \(\lim_{n \to \infty} \|([x_n^{(k)} \otimes u]_T + \|u \otimes x_n^{(k)}\||) = 0 \) for any \(u \) in \(\mathcal{H} \), \(k = 1, \ldots, L \)) one can choose inductively positive integers \(\{n_k\}_{k=1}^L \) such that
\[y^{(3)} := \sum_{k=1}^L \alpha_k^{1/2} x_n^{(k)} \]
satisfies
\begin{align}
\|\phi_T^{-1}(\|fX_T(\widetilde{r}_1 \cup \widetilde{r}_2)\|_{L/H_0}) - \|y(3) \otimes y(3)\|_T\| < \varepsilon / 10, \\
\|y(3)\| \leq 2^{1/2} \|fX_T(\widetilde{r}_1 \cup \widetilde{r}_2)\|^{1/2}, \\
\|[(y(1) + y(2)) \otimes y(3)]_T\| + \|[y(3) \otimes (y(1) + y(2)))]_T\| < \varepsilon / 20, \\
\text{and} \\
\|\|y(3) \otimes y_j\|_T\| + \|[y_j \otimes y(3)]_T\| < \delta / 2, \quad j = 1, \ldots, L.
\end{align}

By (12)–(18) it follows easily that the vector \(x := y(1) + y(2) + y(3) \) satisfies (i) and (ii) above, and the lemma is proved.

The next step in the proof of Theorem 2 is to show that if \(f \) is a nonnegative function in \(L^1 \) such that \(\|f\|_1 \leq 1/2 \), then \(\phi_T^{-1}([f]_{L/H_0}) \in \mathbb{B}(\mathcal{A}_T) \). Once this has been shown, it will follow that if \(f \in L^1 \) is such that \(\|f\|_1 \leq 1/8 \), then \(\phi_T^{-1}([f]_{L/H_0}) \in \mathbb{B}(\mathcal{A}_T) \). Thus taking into account the facts that \(\phi_T \) is invertible and \(\|[f]_{L/H_0}\| \leq M \|\phi_T^{-1}([f]_{L/H_0})\| \) for any \(f \in L^1 \), it will follow that \(\mathcal{A}_T \) has property \(\mathbb{B}_{0,1/8} \), so we are done. To see that for any \(f \in L^1 \) such that \(\|f\|_1 \leq 1/8 \), \(\phi_T^{-1}([f]_{L/H_0}) \in \mathbb{B}(\mathcal{A}_T) \), pick two sequences of positive numbers \(\{\epsilon_n\}_{n=1}^\infty \) and \(\{\delta_n\}_{n=1}^\infty \) decreasing to 0, and a dense, countable subset \(\{z_n\}_{n=1}^\infty \) in \(\mathcal{H} \). By Lemma 2, one can find a sequence \(\{x(n)\}_{n=1}^\infty \) of vectors in the unit ball of \(\mathcal{H} \) such that for every \(n \),
\[\|\phi_T^{-1}([f]_{L/H_0}) - [x(n) \otimes x(n)]_T\| < \epsilon_n, \]
and
\[\|[x(n) \otimes z_k]_T\| + \|[z_k \otimes x(n)]_T\| < \delta_n, \quad k = 1, \ldots, n, \]
so the sequence \(\{x(n)\}_{n=1}^\infty \) converges weakly to 0. Hence by Lemma 1, \(\phi_T^{-1}([f]_{L/H_0}) \in \mathbb{B}(\mathcal{A}_T) \), and the proof of the theorem is complete.

Remarks. This paper constitutes part of the author's Ph.D. thesis written at Texas A&M University under the direction of Carl Pearcy. The referee has kindly pointed out that Jörg Eschmeier obtained a similar result in [10].

References

10. J. Eschmeier, *Representations of $H^\infty(G)$ and invariant subspaces*, preprint.

Department of Mathematics, Texas A&M University, College Station, Texas 77843

Current address: Department of Mathematics, Case Western Reserve University, Cleveland, Ohio 44106/7058

E-mail address: rxg38@po.cwru.edu