Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Characteristic functions and products of bounded derivatives


Author: Aleksander Maliszewski
Journal: Proc. Amer. Math. Soc. 123 (1995), 2203-2211
MSC: Primary 26A24
DOI: https://doi.org/10.1090/S0002-9939-1995-1246531-4
MathSciNet review: 1246531
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This article is dedicated to the answer to the following question: "Which characteristic functions can be expressed as the product of two or more bounded derivatives?".


References [Enhancements On Off] (What's this?)

  • [1] A. M. Bruckner, Differentiation of real functions, Lecture Notes in Math., vol. 659, Springer-Verlag, Berlin and New York, 1978. MR 507448 (80h:26002)
  • [2] C. Goffman, C. J. Neugebauer, and T. Nishiura, Density topology and approximate continuity, Duke Math. J. 28 (1961), 497-506. MR 0137805 (25:1254)
  • [3] C. Kuratowski, Topologie, Vol. I, PWN, Warszawa, 1958. MR 0090795 (19:873d)
  • [4] J. Mařík, Characteristic functions and products of derivatives, Real Anal. Exchange 16 (1990-1991), 245-254. MR 1087488 (91k:26004)
  • [5] G. Petruska and M. Laczkovich, Baire one functions, approximately continuous functions and derivatives, Acta Math. Acad. Sci. Hungar. 25 (1974), 189-212. MR 0379766 (52:671)
  • [6] Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc. 69 (1950), 1-54. MR 0037338 (12:247c)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26A24

Retrieve articles in all journals with MSC: 26A24


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1246531-4
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society