A simple proof of a remarkable continued fraction identity

Authors:
P. G. Anderson, T. C. Brown and P. J.-S. Shiue

Journal:
Proc. Amer. Math. Soc. **123** (1995), 2005-2009

MSC:
Primary 11A55

MathSciNet review:
1249866

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give a simple proof of a generalization of the equality

**[1]**William W. Adams and J. L. Davison,*A remarkable class of continued fractions*, Proc. Amer. Math. Soc.**65**(1977), no. 2, 194–198. MR**0441879**, 10.1090/S0002-9939-1977-0441879-4**[2]**Tom C. Brown,*Descriptions of the characteristic sequence of an irrational*, Canad. Math. Bull.**36**(1993), no. 1, 15–21. MR**1205889**, 10.4153/CMB-1993-003-6**[3]**P. E. Böhmer,*Über die Transzendenz gewisser dyadischer Brüche*, Math. Ann.**96**(1926), 367-377; erratum**96**(1926), 735.**[4]**L. V. Danilov,*Certain classes of transcendental numbers*, Mat. Zametki**12**(1972), 149–154 (Russian). MR**0316391****[5]**J. L. Davison,*A series and its associated continued fraction*, Proc. Amer. Math. Soc.**63**(1977), no. 1, 29–32. MR**0429778**, 10.1090/S0002-9939-1977-0429778-5**[6]**L. Euler,*Specimen algorithmi singularis*, Novi Commentarii Academiae Cientiarum Petropolitanae**9**(1762), 53-69; reprinted in his Opera Omnia, Series 1, Vol. 15, pp. 31-49.**[7]**A. S. Fraenkel, M. Mushkin, and U. Tassa,*Determination of [𝑛𝜃] by its sequence of differences*, Canad. Math. Bull.**21**(1978), no. 4, 441–446. MR**523586**, 10.4153/CMB-1978-077-0**[8]**Ronald L. Graham, Donald E. Knuth, and Oren Patashnik,*Concrete mathematics*, 2nd ed., Addison-Wesley Publishing Company, Reading, MA, 1994. A foundation for computer science. MR**1397498****[9]**Kumiko Nishioka, Iekata Shiokawa, and Jun-ichi Tamura,*Arithmetical properties of a certain power series*, J. Number Theory**42**(1992), no. 1, 61–87. MR**1176421**, 10.1016/0022-314X(92)90109-3**[10]**J. B. Roberts,*Elementary number theory*, MIT Press, Boston, 1977.**[11]**K. F. Roth,*Rational approximations to algebraic numbers*, Mathematika**2**(1955), 1–20; corrigendum, 168. MR**0072182****[12]**J. Shallit,*Characteristic words as fixed points of homomorphisms*, Univ. of Waterloo, Dept. of Computer Science, Tech. Report CS-91-72, 1991.**[13]**H. J. S. Smith,*Note on continued fractions*, Messenger Math.**6**(1876), 1-14.**[14]**Kenneth B. Stolarsky,*Beatty sequences, continued fractions, and certain shift operators*, Canad. Math. Bull.**19**(1976), no. 4, 473–482. MR**0444558**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
11A55

Retrieve articles in all journals with MSC: 11A55

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1249866-4

Article copyright:
© Copyright 1995
American Mathematical Society