A SIMPLE PROOF OF A REMARKABLE CONTINUED FRACTION IDENTITY

P. G. ANDERSON, T. C. BROWN, AND P. J.-S. SHIUE

Abstract. We give a simple proof of a generalization of the equality

\[\sum_{n=1}^{\infty} \frac{1}{2^{[n/2]}} = [0, 2^0, 2^1, 2^1, 2^2, 2^3, 2^5, \ldots], \]

where \(\tau = (1 + \sqrt{5})/2 \) and the exponents of the partial quotients are the Fibonacci numbers, and some closely related results.

Introduction

P. E. Böhmer [3], L. V. Danilov [4], and W. W. Adams and J. L. Davison [1] showed independently that if \(\alpha > 0 \) is irrational, \(b > 1 \) is an integer, and \(S_b(\alpha) = (b - 1) \sum_{k=1}^{\infty} \frac{1}{b^{k^2}} \), then the simple continued fraction for \(S_b(\alpha) \) can be described explicitly in the following way. Let \(\alpha \) have simple continued fraction

\[\alpha = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \ldots}} = [a_0, a_1, \ldots], \]

with \(\frac{a_n}{a_n} = [a_0, \ldots, a_n], n \geq 0 \). Let \(t_0 = a_0 b, t_n = \frac{b^{a_n-2} - b^{a_n-1}}{b^{a_n-1} - 1}, n \geq 1 \). Then \(S_b(\alpha) = [t_0, t_1, \ldots] \). Thus in the case \(\alpha = \tau = (1 + \sqrt{5})/2 \), the golden ratio, and \(b = 2 \), one gets the remarkable equality \(\sum_{n=1}^{\infty} \frac{1}{2^{[n/2]}} = [0, 2^0, 2^1, 2^1, 2^2, 2^3, 2^5, \ldots] \), where the exponents of the partial quotients are the Fibonacci numbers.

More recently, R. L. Graham, D. E. Knuth, and O. Patashnik [8] indicated how to give a very different proof of the power series version of this result, where the number \(b \) is replaced by an indeterminate (they carried out the proof for the case \(\alpha = (1 + \sqrt{5})/2 \), using the continuant polynomials of Euler [6].

In this note we give a proof, which we feel is simpler than the others, which makes use of a property of the “characteristic sequence” of \(\alpha \) discovered by H. J. S. Smith [13]. The crucial idea of our approach appears in Lemma 2 below, where we regard certain initial segments of the characteristic sequence of \(\alpha \) as base \(b \) representations of integers.

(Böhmer, Danilov, and Adams and Davison also show that \(S_b(\alpha) \) is transcendental for every irrational \(\alpha \). We omit the proof of this fact, which is an

Received by the editors May 25, 1993 and, in revised form, November 19, 1993.

1991 Mathematics Subject Classification. Primary 11A55; Secondary 11B39.

©1995 American Mathematical Society
easy application of a theorem of Roth [11], using Lemma 3 and Theorem B below.)

Preliminaries. Let \(\alpha \) be an irrational number with \(0 < \alpha < 1 \). (At the end, we will remove the restriction \(\alpha < 1 \).) Let \(\alpha = [0, a_1, a_2, \ldots] \) and \(b_n = [0, a_1, \ldots, a_n], \ n \geq 0, \) where \(p_n, q_n \) are relatively prime non-negative integers. (As usual, we put \(p_{-2} = 0, \ p_{-1} = 1, \ q_{-2} = 1, \ q_{-1} = 0, \) so that \(p_n = a_n p_{n-1} + p_{n-2}, \ q_n = a_n q_{n-1} + q_{n-2} \) for all \(n \geq 0 \).) For \(n \geq 1 \), define \(f_\alpha(n) = [(n + 1)\alpha] - [n\alpha], \) and consider the infinite binary sequence \(f_\alpha = (f_\alpha(n))_{n \geq 1}, \) which is sometimes called the characteristic sequence of \(\alpha \). Define binary words \(X_n, \ n \geq 0, \) by \(X_0 = 0, \ X_1 = 0a^{-1}1, \ X_k = X_{k-1}\alpha X_{k-2}, \ k \geq 2, \) where \(X^a \) denotes the word \(X \) repeated \(a \) times, and \(X_1 = 1 \) if \(a_1 = 1 \).

The following result was first proved by Smith [13]. Other proofs can be found in [2], [7], [12], and [14], and further references to the characteristic sequence can be found in [2]. Nishioka, Shiokawa, and Tamura [9] treat the more general case \([(n + 1)\alpha + \beta] - [n\alpha + \beta] \).

Lemma 1. For each \(n \geq 1, \) \(X_n \) is a prefix of \(f_\alpha \). That is, \(X_n = f_\alpha(1)f_\alpha(2) \cdots f_\alpha(s), \) where \(s \) is the length of \(X_n \).

The main proof. We are now ready to prove the result stated in the Introduction. (However, we will keep the restriction \(\alpha < 1 \) until the following section.) Let \(b > 1 \) be an integer, let \(0 < \alpha < 1 \) be irrational, \(\alpha = [0, a_1, a_2, \ldots] \), let \(b_n = [0, a_1, \ldots, a_n], \ n \geq 0, \) and let the binary words \(X_n, \ n \geq 0, \) be defined as above.

According to Lemma 1, the binary word \(X_n \) (which has length \(q_n \)) by a trivial induction using \(q_n = a_n q_{n-1} + q_{n-2} \) is identical with the binary word \(f_\alpha(1)f_\alpha(2) \cdots f_\alpha(q_n) \). If we let \(x_n \) denote the integer whose base \(b \) representation is \(X_n \), i.e. \(x_n = f_\alpha(1)b^{q_n-1} + f_\alpha(2)b^{q_n-2} + \cdots + f_\alpha(q_n)b^0 \), then we can write

\[
x_n = b^{q_n} \cdot \sum_{k=1}^{q_n} \frac{f_\alpha(k)}{b^k}.
\]

Now we come to the crucial step.

Lemma 2. For \(n \geq 0, \) let \(t_{n+1} = \frac{b^{q_{n+1}} - b^{q_n}}{b^{q_n} - 1} \). Then for \(n \geq 1, \)

\[
x_{n+1} = t_{n+1} x_n + x_{n-1}.
\]

Proof. Using the facts that \(X_n \) has length \(q_n \), \(X_{n-1} \) has length \(q_{n-1} \), \(x_{n+1} \) is the integer whose base \(b \) representation is \(X_{n+1} \), and \(X_{n+1} = X_{q_{n+1}}X_{n-1} \), it follows that

\[
x_{n+1} = b^{q_{n+1}}(1 + b^{q_n} + b^{2q_n} + \cdots + b^{(a_{n+1} - 1)q_n})x_n + x_{n-1}
\]

\[
= b^{q_n}(b^{q_n+q_{n+1}} - 1)(b^{q_n - 1} - 1)x_n + x_{n-1} = t_{n+1} x_n + x_{n-1}.
\]

Lemma 3. For \(n \geq 1, \)

\[
[0, t_1, \ldots, t_n] = \frac{b-1}{b^{q_n} - 1} \cdot x_n.
\]

Proof. Let \(y_n = \frac{b-1}{b^{q_n} - 1}, \ n \geq 0. \) We show by induction on \(n \) that \([0, t_1, \ldots, t_n] = \frac{x_n}{y_n} \). We start the induction at \(n = 0 \) by setting \(t_0 = 0 \). Note that \(x_0 = 0, \)
$x_1 = 1, \ y_0 = 1, \ y_1 = \frac{b^n - 1}{b - 1} = t_1$. For the induction step, we simply note that $x_{n+1} = t_{n+1}x_n + x_{n-1}$ and $y_{n+1} = t_{n+1}y_n + y_{n-1}$.

Theorem A. Let $b > 1$ be an integer, and let $0 < \alpha < 1$ be irrational, with $f_\alpha(n) = [(n + 1)\alpha] - [n\alpha], \ n \geq 1$. Let $\alpha = [0, a_1, a_2, \ldots]$, let $b_n = [0, a_1, \ldots, a_n], \ n \geq 0$ (where p_n, q_n are relatively prime non-negative integers), and let $t_n = \frac{b_{n+1} - b_n}{b_n - 1}, \ n \geq 1$. Then

$$(b - 1) \sum_{k=1}^{\infty} \frac{f_\alpha(k)}{b^k} = [0, t_1, t_2, \ldots].$$

Proof. We have seen that $x_n = b^{a_n} \sum_{k=1}^{a_n} \frac{f_\alpha(k)}{b^k}$. Hence by Lemma 3,

$$(b - 1) \left(\frac{b^{a_n}}{b_{a_n} - 1} \right) \sum_{k=1}^{a_n} \frac{f_\alpha(k)}{b^k} = [0, t_1, \ldots, t_n],$$

and we can take the limit as $n \to \infty$.

Theorem B. With the same hypotheses as in Theorem A, we have

$$(b - 1) \sum_{n=1}^{\infty} \frac{1}{b^{[n/\alpha]}} = [0, t_1, t_2, \ldots].$$

Proof. This is a restatement of Theorem A, using the easily verified fact (when $0 < \alpha < 1$) that $f_\alpha(k) = 1$ if and only if $k = [n/\alpha]$ for some n.

Theorem C. With the same hypotheses as in Theorem A, we have

$$(b - 1)^2 \sum_{k=1}^{\infty} \frac{[k\alpha]}{b^k} = [0, t_1, t_2, \ldots].$$

Proof. Using $f_\alpha(k) = [(k + 1)\alpha] - [k\alpha]$ and $[\alpha] = 0$, the series in Theorem C is obtained from the series in Theorem A by a slight rearrangement.

Theorem D. With the same hypotheses as in Theorem A, we have

$$\sum_{k=1}^{\infty} \frac{f_\alpha(k)}{b^k} = (b - 1) \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(b^{a_k} - 1)(b^{a_k - 1} - 1)}.$$

Proof. We saw in the proof of Lemma 3 that $[0, t_1, \ldots, t_n] = \frac{s_n}{y_n}, \ n \geq 1$, where $y_n = \frac{b^{a_n} - 1}{b - 1}, \ n \geq 0$. By a well-known theorem (J. B. Roberts [10, p. 101]), $\frac{s_n}{y_n} = \sum_{k=1}^{n} (-1)^{k-1} \frac{(-1)^{k-1}}{y_k y_{k-1}}, \ n \geq 1$, and Theorem D now follows from Theorem A.

Removing the restriction $\alpha < 1$. Now let $\alpha' = a_0 + \alpha$, where $a_0 \geq 0$ is an integer, α is irrational, and $0 < \alpha < 1$.

By Theorem A we get

$$(b - 1) \sum_{k=1}^{\infty} \frac{f_{\alpha'}(k)}{b^k} = (b - 1) \sum_{k=1}^{\infty} \frac{a_0 + f_\alpha(k)}{b^k}$$

$$= (b - 1) a_0 \sum_{k=1}^{\infty} \frac{1}{b^k} + (b - 1) \sum_{k=1}^{\infty} \frac{f_\alpha(k)}{b^k}$$

$$= a_0 + [0, t_1, t_2, \ldots] = [a_0, t_1, t_2, \ldots].$$
To handle Theorem B we need to use the fact, whose simple proof we omit, that if \(\alpha' = a_0 + \alpha \), where \(0 < \alpha < 1 \), then for each \(k = 0, 1, 2, \ldots \), the value \(k \) is assumed by the expression \(\lfloor n/\alpha' \rfloor \) exactly \(a_0 + 1 \) times if \(\lfloor n/\alpha \rfloor = k \) for some \(n \geq 1 \), and exactly \(a_0 \) times if \(\lfloor n/\alpha \rfloor \) never equals \(k \). It then follows from Theorem B that \((b - 1) \sum_{n=1}^{\infty} \frac{[\alpha' n]}{k^k} = [a_0 b, t_1, t_2, \ldots] \).

By Theorem C and some careful rearrangement we get \((b - 1)^2 \sum_{k=1}^{\infty} \frac{[\alpha b]}{k^k} = [a_0 b, t_1, t_2, \ldots] \).

Finally, the modified Theorem D (using the modified Theorem A) is

\[
(b - 1) \sum_{k=1}^{\infty} \frac{f_{\alpha'}(k)}{b^k} = a_0 + \sum_{k=1}^{\infty} \frac{(-1)^{k-1}(b - 1)^2}{(b a_k - 1)(b a_{k-1} - 1)}.
\]

Remark. This paper grew out of the first author’s consideration of the number \(\sum_{k=1}^{\infty} \frac{f_{\alpha}(k)}{2^k} \), where \(\alpha = \frac{1 + \sqrt{5}}{2} \), as the fixed point of the sequence \(\{g_n(0)\} \), \(n \geq 1 \), where \(g_1(x) = x/2 \), \(g_2(x) = (x + 1)/2 \), \(g_n(x) = g_{n-1}(g_{n-2}(x)) \), \(n \geq 3 \). This quickly leads (upon setting \(g_n(x) = (x + a_n)/b_n \) and solving for \(a_n \) and \(b_n \)) to

\[
\sum_{k=1}^{\infty} \frac{f_{\alpha}(k)}{2^k} = [0, 2^0, 2^1, 2^1, 2^2, 2^3, 2^5, \ldots].
\]

Acknowledgment

The authors are grateful to the referee for references [3] and [4] and for several helpful remarks.

References

Department of Computer Science, Rochester Institute of Technology, Rochester, New York 14623-0887

E-mail address: pga@cs.rit.edu

Department of Mathematics and Statistics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

E-mail address: tbrown@sfu.ca

Department of Mathematical Sciences, University of Nevada, Las Vegas, Nevada 89154-4020

E-mail address: shiue@nevada.edu