Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the composition of transcendental entire and meromorphic functions


Author: Walter Bergweiler
Journal: Proc. Amer. Math. Soc. 123 (1995), 2151-2153
MSC: Primary 30D35
DOI: https://doi.org/10.1090/S0002-9939-1995-1257098-9
MathSciNet review: 1257098
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that $ f(g) - R$ has infinitely many zeros if f is a transcendental meromorphic, g a transcendental entire, and R a non-constant rational function. The exponent of convergence of the sequence of zeros of $ f(g) - R$ is also estimated.


References [Enhancements On Off] (What's this?)

  • [1] W. Bergweiler, Proof of a conjecture of Gross concerning fix-points, Math. Z. 204 (1990), 381-390. MR 1107470 (92j:30028)
  • [2] -, On the existence of fixpoints of composite meromorphic functions, Proc. Amer. Math. Soc. 114 (1992), 879-880. MR 1091176 (92f:30034)
  • [3] W. Bergweiler and C.-C. Yang, On the value distribution of composite meromorphic functions, Bull. London Math. Soc. 25 (1993), 357-361. MR 1222729 (94d:30043)
  • [4] A. Dinghas, Vorlesungen über Funktionentheorie, Springer, Berlin, Göttingen, and Heidelberg, 1961. MR 0179329 (31:3577)
  • [5] F. Gross, Factorization of meromorphic functions, U.S. Government Printing Office, Washington, DC, 1972. MR 0407251 (53:11030)
  • [6] K. Katajamäki, L. Kinnunen, and I. Laine, On the value distribution of composite entire functions, Complex Variables Theory Appl. 20 (1992), 63-69. MR 1284352 (95g:30037)
  • [7] -, On the value distribution of some composite meromorphic functions, Bull. London Math. Soc. 25 (1993). MR 1233407 (94j:30027)
  • [8] J. K. Langley, On the fixpoints of composite entire functions of finite order, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), 995-1001. MR 1303765 (95j:30026)
  • [9] G. S. Prokopovich, Fix-points of meromorphic functions, Ukrainian Math. J. 25 (1973), 198-208; transl. of Ukrain. Mat. Zh. 25 (1973), 248-260.
  • [10] C.-C. Yang and J.-H. Zheng, Further results on fixpoints and zeros of entire functions, Trans. Amer. Math. Soc. 347 (1995), 37-50. MR 1179403 (95c:30032)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30D35

Retrieve articles in all journals with MSC: 30D35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1257098-9
Keywords: Meromorphic function, entire function, composition, factorization, fixpoint
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society