Delay differential inclusions with constraints

Authors:
Shou Chuan Hu and Nikolaos S. Papageorgiou

Journal:
Proc. Amer. Math. Soc. **123** (1995), 2141-2150

MSC:
Primary 34K15; Secondary 34A60, 49J24

DOI:
https://doi.org/10.1090/S0002-9939-1995-1257111-9

MathSciNet review:
1257111

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we examine functional differential inclusions with memory and state constraints. For the case of time-independent state constraints, we show that the solution set is under Carathéodory conditions on the orientor field. For the case of time-dependent state constraints we prove two existence theorems. For this second case, the question of whether the solution set is remains open.

**[1]**N. Aronszajn,*Le corespondant topologique de l'unicité dans la theorie des equations differentielles*, Ann. of Math.**43**(1942), 730-738. MR**0007195 (4:100e)****[2]**J.-P. Aubin and A. Cellina,*Differential inclusions*, Springer-Verlag, Berlin, 1984. MR**755330 (85j:49010)****[3]**F. S. DeBlasi and J. Myjak,*On the solution set for differential inclusions*, Bull. Polish Acad. Sci.**33**(1985), 17-23.**[4]**S. Eilenberg and D. Montgomery,*Fixed point theorems for multivalued transformations*, Amer. J. Math.**68**(1946), 214-222. MR**0016676 (8:51a)****[5]**E. Flytzanis and N. S. Papageorgiou,*Existence of monotone and slow solutions for differential inclusions*, Internat. J. Systems Sci.**20**(1989), 2241-2249. MR**1031152 (90j:34024)****[6]**G. Haddad,*Monotone trajectories of differential inclusions and functional differential inclusions with memory*, Israel J. Math.**39**(1981), 83-100. MR**617292 (83b:34019)****[7]**G. Haddad and J.-M. Lasry,*Periodic solutions of functional differential inclusions and fixed points of*-*selectionable correspondences*, J. Math. Anal. Appl.**96**(1983), 295-312. MR**719317 (84m:34015)****[8]**C. J. Himmelberg,*Measurable relations*, Fund. Math.**87**(1975), 59-71. MR**0367142 (51:3384)****[9]**C. J. Himmelberg and F. S. Van Vleck,*On the topological triviality of the solution sets*, Rocky Mountain J. Math.**10**(1980), 247-252. MR**573874 (81g:34006)****[10]**-,*A note on the solution sets of differential inclusions*, Rocky Mountain J. Math.**12**(1982), 621-625. MR**683856 (84b:34019)****[11]**S. Hu and N. S. Papageorgiou,*On the topological regularity of the solution set of differential inclusions with constraints*, J. Differential Equations**107**(1994), 280-289. MR**1264523 (94m:34036)****[12]**D. Hyman,*On decreasing sequences of compact absolute retracts*, Fund. Math.**64**(1969), 91-97. MR**0253303 (40:6518)****[13]**M. Kisielewicz, Z. Nowak, and M. Przybybowska,*An approximation theorem for vector valued functions*, Funct. Approx. Comment. Math.**XII**(1982), 55-62. MR**817307 (86m:41039)****[14]**N. S. Papageorgiou,*On measurable multifunctions with applications to random multivalued equations*, Math. Japon.**32**(1987), 437-464. MR**914749 (89a:54019)****[15]**L. Rybinski,*On Carathéodory type selections*, Fund. Math.**125**(1985), 187-193. MR**813756 (87k:28012)****[16]**J. Yorke,*Spaces of solutions*, Lecture Notes in Oper. Res. and Math., vol. 12, Springer-Verlag, Berlin, 1969, pp. 383-403. MR**0361294 (50:13739)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34K15,
34A60,
49J24

Retrieve articles in all journals with MSC: 34K15, 34A60, 49J24

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1257111-9

Keywords:
Upper semicontinuous multifunction,
-set,
tangent cone,
periodic solution,
Hausdorff metric,
time-varying constraint

Article copyright:
© Copyright 1995
American Mathematical Society