On the determinant and the holonomy of equivariant elliptic operators

Author:
Kenji Tsuboi

Journal:
Proc. Amer. Math. Soc. **123** (1995), 2275-2281

MSC:
Primary 58G26; Secondary 58G10

MathSciNet review:
1260183

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let *M* be a closed oriented smooth manifold, *G* a compact Lie group consisting of diffeomorphisms of a principal *G*-bundle with a connection and *D* a *G*-equivariant elliptic operator. Then a locally constant family of elliptic operators and its determinant line bundle over *Z* are naturally defined by *D*. Moreover the holonomy of the determinant line bundle is defined by the connection in *P*. In this note, we give an explicit formula to calculate the holonomy (Theorem 1.4) and give a proof of the Witten holonomy formula (Theorem 1.7) in the special case above.

**[1]**M. F. Atiyah and R. Bott,*A Lefschetz fixed point formula for elliptic complexes. I*, Ann. of Math. (2)**86**(1967), 374–407. MR**0212836****[2]**M. F. Atiyah and R. Bott,*A Lefschetz fixed point formula for elliptic complexes. II. Applications*, Ann. of Math. (2)**88**(1968), 451–491. MR**0232406****[3]**M. F. Atiyah, V. K. Patodi, and I. M. Singer,*Spectral asymmetry and Riemannian geometry. I*, Math. Proc. Cambridge Philos. Soc.**77**(1975), 43–69. MR**0397797****[4]**M. F. Atiyah, V. K. Patodi, and I. M. Singer,*Spectral asymmetry and Riemannian geometry. II*, Math. Proc. Cambridge Philos. Soc.**78**(1975), no. 3, 405–432. MR**0397798****[5]**M. F. Atiyah and I. M. Singer,*The index of elliptic operators. III*, Ann. of Math. (2)**87**(1968), 546–604. MR**0236952****[6]**M. F. Atiyah and I. M. Singer,*The index of elliptic operators. IV*, Ann. of Math. (2)**93**(1971), 119–138. MR**0279833****[7]**Jean-Michel Bismut and Daniel S. Freed,*The analysis of elliptic families. II. Dirac operators, eta invariants, and the holonomy theorem*, Comm. Math. Phys.**107**(1986), no. 1, 103–163. MR**861886****[8]**Harold Donnelly,*Eta invariants for 𝐺-spaces*, Indiana Univ. Math. J.**27**(1978), no. 6, 889–918. MR**511246**, 10.1512/iumj.1978.27.27060**[9]**Akio Hattori,*𝑆𝑝𝑖𝑛^{𝑐}-structures and 𝑆¹-actions*, Invent. Math.**48**(1978), no. 1, 7–31. MR**508087**, 10.1007/BF01390060

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
58G26,
58G10

Retrieve articles in all journals with MSC: 58G26, 58G10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1995-1260183-9

Keywords:
The determinant and the holonomy of elliptic operators

Article copyright:
© Copyright 1995
American Mathematical Society