REAL RANK OF TENSOR PRODUCTS OF C*-ALGEBRAS

KAZUNORI KODAKA AND HIROYUKI OSAKA

(Communicated by Palle E. T. Jorgensen)

Abstract. We study the real rank of tensor products of C*-algebras. From the dimension theory: \(\dim(X \times Y) \leq \dim X + \dim Y \), it is naturally hoped that \(RR(A \otimes B) \leq RR(A) + RR(B) \). We then prove that it is false generally. Moreover, we point out that (FS)-property for C*-algebras is not stable under taking tensor products.

1. Introduction

The concept of the non-commutative real rank for a C*-algebra \(A (= RR(A)) \) was defined recently by Brown and Pedersen [4]. An important part of the motivation for introducing it is to have an analogue for C*-algebras of the dimension for topological spaces: if \(X \) is a locally compact Hausdorff space, the dimension \(\dim X \) can be defined as a property of the algebras \(C(X) \) of continuous functions on \(X \) [10]. Thus \(\dim X \leq n \) if for any real-valued functions \(f_1, f_2, \ldots, f_{n+1} \) and any non-negative real number \(\varepsilon \) there exist other real-valued functions \(g_1, g_2, \ldots, g_{n+1} \) such that \(\|f_i - g_i\| < \varepsilon \) and \(\sum C(X)g_i = C(X) \).

Since Gelfand's representation theory identifies commutative C*-algebras with algebras \(C_b(X) \) of continuous functions, vanishing at infinity, on locally compact Hausdorff spaces, it is natural to define the following concept: let \(A \) be a unital C*-algebra and \(A_{sa} \) be the set of all selfadjoint elements in \(A \). \(RR(A) \) is the least integer \(n \) such that \(\{(a_0, a_1, \ldots, a_n) \in A_{sa}^{n+1} : \sum_{k=0}^{n} A_{a_k} = A\} \) is dense in \(A_{sa}^{n+1} \). If \(A \) is non-unital, its real rank is defined by \(RR(A) \), where \(A \) is the C*-algebra obtained by adding a unit to \(A \). From this definition it is obvious that \(\dim X = RR(C(X)) \) for a compact Hausdorff space \(X \).

Brown and Pedersen [4], Zhang [13, 14], and the second author [8, 9], however, studied that the real rank does not always have the parallel properties of the dimension theory: let \(X \) be a locally compact Hausdorff space and \(Y \) be a closed subset of \(X \). Then \(\dim X \leq \max \{\dim Y, \dim X \setminus Y\} \) and \(\dim X = \dim \beta X \), where \(\beta X \) means the Stone-Čech compactification of \(X \). For example, let \(D \) be an irreducible matrix such that \(\det(I - D) = 0 \) and \(O_D \) be the Cuntz-Krieger algebra corresponding to \(D \). Zhang [14] stated that \(RR(O_D) = RR(M(O_D \otimes K) / O_D \otimes K) = 0 \) but \(RR(M(O_D \otimes K)) \neq 0 \), where

Received by the editors November 19, 1993.
1991 Mathematics Subject Classification. Primary 46L05.

©1995 American Mathematical Society
K is the algebra of compact operators on some separable infinite-dimensional Hilbert space and $M(A)$ means the multiplier algebra of A.

In this note, we treat the tensor products of C^*-algebras. From the dimension theory $\dim(X \times Y) \leq \dim X + \dim Y$ it is natural to conjecture that $RR(A \otimes B) \leq RR(A) + RR(B)$. We prove, however, it is false generally. That is, let A be a unital C^*-algebra with non-trivial K_1-group of $A(= K_1(A))$, then $RR(A \otimes B(H)) \neq 0$, where $B(H)$ denotes the algebra of all bounded operators on some separable infinite-dimensional Hilbert space H. Therefore, if B is one of the Bunce-Dedens algebras, we know $RR(B \otimes B(H)) \neq 0$, and this is a counterexample because it is known that $RR(B) = 0$, $K_1(B) = \mathbb{Z}$ [1][2], and $RR(B(H)) = 0$ [4]. Throughout this note tensor products of C^*-algebras mean the minimal tensor products.

We refer the reader to [3][4][6][8][9][11][13][14] for results about the real rank.

2. Result

We recall that C^*-algebra A is exact if

$$0 \to A \otimes K \to A \otimes B(H) \to A \otimes B(H)/K \to 0$$

is an exact sequence [5].

Proposition. Let A be a unital exact C^*-algebra with $K_1(A) \neq 0$. Then $RR(A \otimes B(H)) \neq 0$.

Proof. By the six-term exact sequence from K-Theory [1],

$$
\begin{array}{cccccc}
K_0(A \otimes K) & \longrightarrow & K_0(A \otimes B(H)) & \longrightarrow & K_0(A \otimes B(H)/K) \\
\uparrow & & \pi_* & & \downarrow \delta \\
K_1(A \otimes B(H)/K) & \longleftarrow & K_1(A \otimes B(H)) & \longleftarrow & K_1(A \otimes K)
\end{array}
$$

Since $K_1(A \otimes B(H)) = 0$ (see [7, Theorem 2.5]), π_* is not surjective. For, if π_* is surjective, $\text{Ker} \delta = K_0(A \otimes B(H)/K)$, and $\delta = 0$. Since $\text{Ker} \iota_* = \text{Im} \partial$, we know ι_* is injective, and $K_1(A \otimes B(H)) \neq 0$. This is a contradiction.

Hence, we know there is a projection in $A \otimes B(H)/K \otimes K$ which cannot be lifted to a projection in $A \otimes B(H) \otimes K$.

Consider the following C^*-exact sequence:

$$0 \to A \otimes K \otimes K \to A \otimes B(H) \otimes K \to A \otimes B(H)/K \otimes K \to 0.$$ Even if $RR(A \otimes K) = RR(A \otimes B(H)/K) = 0$, by [4, Theorem 3.14] (cf. [13, Proposition 2.3]) and the above argument, $RR(A \otimes B(H) \otimes K) \neq 0$ and $RR(A \otimes B(H)) \neq 0$ (cf. [4, Corollary 3.3]). Otherwise, it is trivially $RR(A \otimes B(H)) \neq 0$, and the proof is completed. \(\Box\)

The next result means that the real rank of tensor products of C^*-algebras with real rank zero is not always zero.
Corollary. Let B be one of the Bunce-Deddens algebras. We have, then,

$$RR(B \otimes B(H)) \neq 0.$$

Proof. Since the Bunce-Deddens algebras are nuclear, they are exact [5]. By [1][2], we know $RR(B) = 0$ and $K_1(B) = \mathbb{Z}$. □

3. Remarks

(1) Using the idea in Proposition we can produce another example which does not satisfy the conjecture described in the introduction.

Let B be one of the Bunce-Deddens algebras and O_n be the Cuntz algebra. By the Küneth Theorem [12, Theorem 2.14], we know $K_1(B \otimes O_n) = \mathbb{Z}/(n-1)\mathbb{Z}$. As in the same argument $RR(B \otimes M(O_n \otimes K)) \neq 0$. On the other hand, O_n is a purely infinite simple C^*-algebra and $K_1(O_n) = 0$. We know $RR(M(O_n \otimes K)) = 0$ by Zhang [14, Examples 2.7(i)].

(2) As Brown and Pedersen pointed out in [4], a C^*-algebra has real rank zero if and only if it has the (FS)-property, that is, the set of its all selfadjoint elements has a dense set of elements with finite spectrum. Therefore, Corollary means that (FS)-property is not stable under taking tensor products.

References

9. , Real rank of crossed products by connected compact groups, preprint.

Department of Mathematics, College of Science, Ryukyu University, Okinawa 903-01 Japan

E-mail address, K. Kodaka: b985562@sci.u-ryukyu.ac.jp
E-mail address, H. Osaka: osaka@sci.u-ryukyu.ac.jp