Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The error term of holomorphic mappings in Nevanlinna theory

Author: Zhuan Ye
Journal: Proc. Amer. Math. Soc. 123 (1995), 2155-2164
MSC: Primary 32H30; Secondary 30D15
MathSciNet review: 1277142
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a holomorphic mapping from $ {\mathbb{C}^m}$ to $ {\mathbb{P}^n}$ for any m and n with $ m \geq n \geq 1$ which shows Cherry-Lang-Wong's upper bound of the error term of the Second Main Theorem in Nevanlinna theory is essentially the best possible. Thus a question of Serge Lang is answered affirmatively in higher dimensions.

References [Enhancements On Off] (What's this?)

  • [1] W. Cherry, The Nevanlinna error term for coverings generically surjective case, Proceedings Symposium on Value Distribution Theory in Several Complex Variables (W. Stoll, ed.), Univ. of Notre Dame Press, 1993, pp. 37-54. MR 1243017 (95b:30040)
  • [2] P. Hall, Nevanlinna error terms of some meromorphic functions, preprint.
  • [3] A. Hinkkanen, A sharp form of Nevanlinna's second fundamental theorem, Invent. Math. 108 (1992), 549-574. MR 1163238 (93c:30045)
  • [4] S. Lang, The error term in Nevanlinna theory, Duke Math. J. 56 (1988), 193-218. MR 932862 (89g:32037)
  • [5] S. Lang and W. Cherry, Topics on Nevanlinna theory, Lecture Notes in Math., vol. 1433, Springer-Verlag, Berlin and New York, 1990. MR 1069755 (91k:32025)
  • [6] J. Miles, A sharp form of the lemma on the logarithmic derivative, J. London Math. Soc. 45 (1992), 243-254. MR 1171552 (93i:30026)
  • [7] W. Rudin, Function theory in the unit ball of $ {\mathbb{C}^n}$, Springer-Verlag, Berlin and New York, 1980. MR 601594 (82i:32002)
  • [8] L. R. Sons and Z. Ye, The best error terms of classical functions (to appear). MR 1700264 (2000f:30020)
  • [9] P. Vojta, Diophantine approximations and value distribution theory, Lecture Notes in Math., vol. 1239, Springer-Verlag, Berlin and New York, 1987. MR 883451 (91k:11049)
  • [10] P. M. Wong, On the second main theorem of Nevanlinna theory, Amer. J. Math. 111 (1989), 549-583. MR 1011549 (91b:32030)
  • [11] P. M. Wong and W. Stoll, Second main theorem of Nevanlinna theory for nonequidimensional meromorphic maps, Amer. J. Math. 116 (1994), 1031-1071. MR 1296724 (95g:32042)
  • [12] Z. Ye, On Nevanlinna's secondary deficiency (to appear).
  • [13] -, On Nevanlinna's second main theorem in projective space, preprint.
  • [14] -, On Nevanlinna's error terms, Duke Math. J. 64 (1991), 243-260. MR 1136375 (93a:30039)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32H30, 30D15

Retrieve articles in all journals with MSC: 32H30, 30D15

Additional Information

Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society