SMALL REPRESENTATIONS
OF FINITE DISTRIBUTIVE LATTICES
AS CONGRUENCE LATTICES

GEORGE GRÄTZER, IVAN RIVAL, AND NEJIB ZAGUIA

(Communicated by Lance W. Small)

Abstract. A recent result of G. Grätzer, H. Lakser, and E. T. Schmidt states that for any distributive lattice \(D \) with \(n \) join-irreducible elements, there exists a lattice \(L \) with \(O(n^2) \) elements, whose congruence lattice \(\text{Con} \, L \) is isomorphic to \(D \). We show that this result is best possible.

1. Introduction

It is a classical result of R. P. Dilworth (circa 1940)—first published in 1962 in G. Grätzer and E. T. Schmidt [5]— that every finite distributive lattice is the congruence lattice of a lattice. (See G. Grätzer [2] for a brief review of the field (about 40 papers) that grew out of this result.)

In view of the modern interest in algorithmic complexity, attention has turned, in recent years, to computing the minimum size of the lattice \(L \) whose congruence lattice \(\text{Con} \, L \) is isomorphic to the given distributive lattice \(D \).

It is natural to measure the size of the lattice \(L \) in terms of the number of join-irreducible elements of the distributive lattice \(D \). For an arbitrary finite distributive lattice \(D \) with \(n \) join-irreducible elements, it was shown by G. Grätzer and E. T. Schmidt [5] that there is a lattice \(L \) of size \(O(2^{2n}) \) such that \(\text{Con} \, L \cong D \). Recently, G. Grätzer and H. Lakser [3] elaborated a construction in which the size of \(L \) was reduced to \(O(n^3) \). Subsequently, G. Grätzer, H. Lakser, and E. T. Schmidt [4] have announced that they can construct such a lattice with \(O(n^2) \) elements. The purpose of this note is to show that no one can do better.

Theorem. Let \(\alpha \) be a real number satisfying the following condition: Every distributive lattice \(D \) with \(n \) join-irreducible elements can be represented as the congruence lattice of a lattice \(L \) with \(O(n^\alpha) \) elements. Then \(\alpha \geq 2 \).
2. Two Lemmas

In this section we prove two general lemmas.

If Φ is a join-irreducible congruence of a finite lattice L, then we can represent it in the form $\Phi = \Theta(v, u)$, where $v, u \in L$ and $v < u$ (that is, v is covered by u); as usual, $\Theta(v, u)$ denotes the smallest congruence collapsing v and u.

Lemma 1. Let L be a lattice, and let $v_i, u_i \in L$ satisfy $v_i < u_i$, for $i = 1, 2$. Let $\Phi_i = \Theta(v_i, u_i)$, for $i = 1, 2$. If $\Phi_1 < \Phi_2$ in $\text{Con} L$, then there is a three-element chain $\{e_1, h, e_2\}$ in L such that $\Phi_i = \Theta(h, e_i)$, for $i = 1, 2$, and $e_1 < h < e_2$ or $e_2 < h < e_1$.

Proof. We assume that the reader is familiar with the basic concepts and notations of projectivity in lattices (see, for instance, pages 129–130 of [1]). Since $v_1 = u_1 (0(1, 2, u_2))$ and $v_1 < u_1$, by Theorem III.1.2 *ibid*, there is a sequence of projectivities

$$u_2/v_2 = y_1/x_1 / y_2/x_2 \searrow y_3/x_3 / \ldots \searrow y_n/x_n = u_1/v_1,$$

for some natural number $n > 1$. Obviously,

$$\Phi_2 = \Theta(x_1, y_1) \geq \Theta(x_2, y_2) \geq \Theta(x_3, y_3) \geq \ldots \geq \Theta(x_n, y_n) = \Phi_1.$$

Since $\Phi_2 \succ \Phi_1$, there is an i satisfying $\Theta(x_i, y_i) = \Phi_2$, $\Theta(x_{i+1}, y_{i+1}) = \Phi_1$, and $1 \leq i < n$. For this i, either $y_i/x_i \searrow y_{i+1}/x_{i+1}$ or $y_{i+1}/x_{i+1} \searrow y_i/x_i$. In the first case, set $h = y_i \wedge x_{i+1}$, $e_2 = x_i$, and $e_1 = y_i$; obviously, $e_1 < h < e_2$, $\Phi_1 = \Theta(h, e_1)$, and $\Phi_2 = \Theta(h, e_2)$. If $y_i/x_i \searrow y_{i+1}/x_{i+1}$, we proceed similarly, and obtain Φ_1 on top. □

The second lemma deals with join-independence. A set A in a lattice L is join-independent if for any $a \in A$ and finite subset $A_1 \subseteq A$, the inequality $a \leq \bigvee A$ implies that $a \in A_1$.

Lemma 2. Let L be a lattice, let $A \subseteq L$, and let $b \in L$ be a lower bound of A in L. If $\{\Theta(b, x) \mid x \in A\}$ is join-independent in $\text{Con} L$, then A is join-independent in L.

Proof. Indeed, if $a \leq \bigvee A_1$ for some finite $A_1 \subseteq A$, then

$$\Theta(b, a) \leq \bigvee \{\Theta(b, x) \mid x \in A_1\},$$

a contradiction. □

Finally, observe that in a distributive lattice, a set A of join-irreducible elements is independent iff the elements are pairwise incomparable. So we obtain the following

Corollary. Let L be a lattice, let $A \subseteq L$, and let $b \in L$ be a lower bound of A in L. If $\{\Theta(b, x) \mid x \in A\}$ is a set of pairwise incomparable join-irreducible congruences, then A is join-independent in L.

3. Proof of the Theorem

Let n be a natural number. Let D_n be a distributive lattice whose partially ordered set P_n of join-irreducible elements is bipartite (that is, every element is...
either maximal or minimal) and in which there are $O(n^2)$ covering edges. Let L_n be a lattice satisfying $\text{Con } L_n \cong D_n$, and contrary to the Theorem assume that L_n has $O(n^\alpha)$ elements where $\alpha < 2$.

There are $O(n^2)$ covering pairs of join-irreducible congruences of L_n. By Lemma 1, each pair $\Phi_1 \prec \Phi_2$ corresponds to a three-element chain $e_1 < h < e_2$. Since there are $O(n^2)$ covering pairs of join-irreducible congruences and there are $O(n^\alpha)$ elements in L_n, there must be an element $h \in L_n$ that appears as the middle element of $O\left(\frac{n^2}{n^\alpha}\right) = O(n^{2-\alpha})$ three-element chains. For half of these chains, still $O(n^{2-\alpha})$ in number, the top interval (or dually, the bottom interval) defines the larger congruence. So we obtain in L_n an element h and a set A of elements, $O(n^{2-\alpha})$ in number, so that all the $\Theta(h, x)$ are maximal (or all are minimal) join-irreducible congruences of L_n. Obviously, these congruences are pairwise incomparable. By the Corollary to Lemma 2, A—under join—generates a free join-semilattice F (or in the dual case, a free meet-semilattice). The set $F \subseteq L_n$ has $O(2^{n^{2-\alpha}})$ elements. But this is a contradiction since L_n has only $O(n^2)$ elements.

References

(G. Grätzer) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MANITOBA, WINNIPEG, MANITOBA, CANADA R3T 2N2
E-mail address: George_Gratzer@umanitoba.ca

(I. Rival and M. Zaguia) DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF OTTAWA, OTTAWA, ONTARIO, CANADA K1N 6N5
E-mail address: rival@csi.uottawa.ca
E-mail address: zaguia@csi.uottawa.ca