Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the compactness of the evolution operator generated by certain nonlinear $ \Omega$-accretive operators in general Banach spaces


Author: Athanassios G. Kartsatos
Journal: Proc. Amer. Math. Soc. 123 (1995), 2081-2091
MSC: Primary 47H20; Secondary 34G20, 39B72, 47H06
DOI: https://doi.org/10.1090/S0002-9939-1995-1307535-6
MathSciNet review: 1307535
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A sufficient condition is given for the compactness of the evolution operator $ U(t,s)$ generated by a family of nonlinear $ \omega $-accretive operators $ A(t)$. This family $ A(t)$ satisfies a time-dependence condition which is not covered by the results of Calvert and the author. It is also shown that the main part of this sufficient condition is necessary.


References [Enhancements On Off] (What's this?)

  • [1] P. Baras, Compacité de l'opérateur $ f \to u$ solution d'une équation non linéaire $ (du/dt) + Au \mathrel\backepsilon f$, C. R. Acad. Sci. Paris 286 (1978), 1113-1116. MR 0493554 (58:12548)
  • [2] V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Noordhoff, Leyden, The Netherlands, 1975. MR 0390843 (52:11666)
  • [3] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam, 1973.
  • [4] B. D. Calvert and A. G. Kartsatos, On the compactness of the nonlinear evolution operator in a Banach space, Bull. London Math. Soc. 19 (1987), 551-558. MR 915432 (89e:47094)
  • [5] M. G. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces, Israel J. Math. 11 (1972), 57-94. MR 0300166 (45:9214)
  • [6] L. C. Evans, Nonlinear evolution equations in an arbitrary Banach space, Israel J. Math. 26 (1977), 1-42. MR 0440431 (55:13306)
  • [7] S. Gutman, Compact perturbations of m-accretive operators in general Banach spaces, SIAM J. Math. Anal. 13 (1982), 789-800. MR 668321 (84d:34066)
  • [8] -, Evolutions governed by m-accretive plus compact operators, Nonlinear Anal. TMA 7 (1983), 707-715. MR 707079 (84h:34094)
  • [9] A. G. Kartsatos, A direct method for the existence of evolution operators associated with functional evolutions in general Banach spaces, Funkcial. Ekvac. 31 (1988), 89-102. MR 951768 (89j:34093)
  • [10] -, A compact evolution operator generated by a nonlinear time-dependent m-accretive operator in a Banach space, Math. Ann. (to appear). MR 1339922 (96c:47104)
  • [11] A. G. Kartsatos and M. E. Parrott, The weak solution of a functional differential equation in a general Banach space, J. Differential Equations 75 (1988), 290-302. MR 961157 (89k:34134)
  • [12] A. G. Kartsatos and K. Shin, Solvability of functional evolutions via compactness methods in general Banach spaces, Nonlinear Anal. TMA 21 (1993), 517-535. MR 1241826 (94h:34100)
  • [13] V. Lakshmikantham and S. Leela, Nonlinear differential equations in abstract spaces, Pergamon Press, Oxford, 1981. MR 616449 (82i:34072)
  • [14] N. H. Pavel, Nonlinear evolution operators and semigroups, Lecture Notes in Math., vol. 1260, Springer-Verlag, Berlin, 1987. MR 900380 (88j:47087)
  • [15] N. Tanaka, Nonlinear nonautonomous differential equations, Publ. Res. Inst. Math. Sci. 647 (1988), 36-56.
  • [16] -, On the existence of solutions for functional evolution equations, Nonlinear Anal. TMA 12 (1988), 1087-1104. MR 962773 (89i:34110)
  • [17] I. I. Vrabie, Compactness methods for nonlinear evolutions, Longman Sci. Tech., Essex, 1987. MR 932730 (90f:47101)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H20, 34G20, 39B72, 47H06

Retrieve articles in all journals with MSC: 47H20, 34G20, 39B72, 47H06


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1307535-6
Keywords: Compact evolution operator, $ \omega $-accretive operator, compact resolvents, Crandall-Pazy theory
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society