Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Twisted torus bundles over arithmetic varieties


Author: Min Ho Lee
Journal: Proc. Amer. Math. Soc. 123 (1995), 2251-2259
MSC: Primary 22E40; Secondary 11F12, 11G18, 14G35, 14K10
DOI: https://doi.org/10.1090/S0002-9939-1995-1307544-7
MathSciNet review: 1307544
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A twisted torus is a nilmanifold which is the quotient of a real Heisenberg group by a cocompact discrete subgroup. We construct fiber bundles over arithmetic varieties whose fibers are isomorphic to a twisted torus, and express the complex cohomology of such bundles over certain Riemann surfaces in terms of automorphic forms.


References [Enhancements On Off] (What's this?)

  • [1] K. Brown, Cohomology of groups, Springer-Verlag, New York, 1982. MR 672956 (83k:20002)
  • [2] P. Cartier, Quantum mechanical commutation relations and theta functions, Proc. Sympos. Pure Math., vol. 9, Amer. Math. Soc., Providence, RI, 1966, pp. 361-386. MR 0216825 (35:7654)
  • [3] G. Folland, Harmonic analysis in phase space, Princeton Univ. Press, Princeton, NJ, 1989. MR 983366 (92k:22017)
  • [4] G. Hochschild and J.-P. Serre, Cohomology of group extensions, Trans. Amer. Math. Soc. 74 (1953), 110-134. MR 0052438 (14:619b)
  • [5] R. Howe, On the role of the Heisenberg group in harmonic analysis, Bull. Amer. Math. Soc. (N. S.) 3 (1980), 821-843. MR 578375 (81h:22010)
  • [6] D. Kazhdan, On arithmetic varieties, Lie Groups and Their Representations, Halsted, Budapest, 1971, pp. 151-217. MR 0486316 (58:6073)
  • [7] M. Kuga, Fiber varieties over a symmetric space whose fibers are abelian varieties I, II, lecture notes, Univ. Chicago, 1963/64.
  • [8] -, Fiber varieties over a symmetric space whose fibers are abelian varieties, Proc. Sympos. Pure Math., vol. 9, Amer. Math. Soc., Providence, RI, 1966, pp. 338-346. MR 0206168 (34:5990)
  • [9] M. H. Lee, Conjugates of equivariant holomorphic maps of symmetric domains, Pacific J. Math. 149 (1991), 127-144. MR 1099787 (92f:11082)
  • [10] D. Mumford, Tata lectures on theta III, Birkhäuser, Boston, MA, 1991. MR 1116553 (93d:14065)
  • [11] I. Satake, Algebraic structures of symmetric domains, Princeton Univ. Press, Princeton, NJ, 1980. MR 591460 (82i:32003)
  • [12] G. Shimura, Arithmetic theory of automorphic functions, Princeton Univ. Press, Princeton, NJ, 1971. MR 0314766 (47:3318)
  • [13] M. Taylor, Noncommutative harmionic analysis, Amer. Math. Soc., Providence, RI, 1986. MR 852988 (88a:22021)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22E40, 11F12, 11G18, 14G35, 14K10

Retrieve articles in all journals with MSC: 22E40, 11F12, 11G18, 14G35, 14K10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1307544-7
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society