Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Completion theorem for cohomological dimensions


Author: Wojciech Olszewski
Journal: Proc. Amer. Math. Soc. 123 (1995), 2261-2264
MSC: Primary 54F45; Secondary 54E50
DOI: https://doi.org/10.1090/S0002-9939-1995-1307554-X
MathSciNet review: 1307554
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that for every separable metrizable space X with $ {\dim _G}X \leq n$, there exists a metrizable completion Y of X with $ {\dim _G}Y \leq n$ provided that G is either a countable group or a torsion group, and with $ {\dim _G}Y \leq n + 1$ if G is an arbitrary group.


References [Enhancements On Off] (What's this?)

  • [1] J. Dydak, Cohomological dimension and metrizable spaces, Trans. Amer. Math. Soc. 337 (1993), 219-234. MR 1153013 (93g:55001)
  • [2] -, Cohomological dimension and metrizable spaces II, preprint.
  • [3] Y. Kodama, Note on an absolute neighbourhood extensor for metric spaces, J. Math. Soc. Japan 8 (1956), 206-215. MR 0081456 (18:406c)
  • [4] L. R. Rubin and P. J. Schapiro, Cell-like maps onto non-compact spaces of finite cohomological dimension, Topology Appl. 27 (1987), 221-244. MR 918533 (89b:55002)
  • [5] J. J. Walsh, Dimension, cohomological dimension, and cell-like mappings, Lecture Notes in Math., vol. 870, Springer-Verlag, Berlin and New York, 1981, pp. 105-118. MR 643526 (83a:57021)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54F45, 54E50

Retrieve articles in all journals with MSC: 54F45, 54E50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1307554-X
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society