Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The minimum norm of certain completely positive maps

Author: Ching Yun Suen
Journal: Proc. Amer. Math. Soc. 123 (1995), 2407-2416
MSC: Primary 46L05; Secondary 47D25
MathSciNet review: 1213870
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let L be a completely bounded linear map from a unital $ {C^ \ast }$-algebra to the algebra of all bounded linear operators on a Hilbert space. Then

$\displaystyle \min \left\{ {{{\left\Vert \phi \right\Vert}_{{\text{cb}}}}:{{\le...}}} \hfill \\ {{\text{for all}}\;n} \hfill \\ \end{array} } \right\} = 2S(L),$

where $ S(L) = \min \{ {\left\Vert \phi \right\Vert _{{\text{cb}}}}:\phi \pm \operatorname{Re} \lambda L$ is completely positive for all $ \vert\lambda \vert = 1\} $.

References [Enhancements On Off] (What's this?)

  • [1] U. Haagerup and P. de la Harpe, The numerical radius of a nilpotent operator on a Hilbert space, Proc. Amer. Math. Soc. 115 (1992), 371-379. MR 1072339 (92i:47002)
  • [2] V. I. Paulsen, Completely bounded maps and dilations, Pitman Res. Notes Math. Ser., vol. 146, Longman Sci. Tech., London, 1986. MR 868472 (88h:46111)
  • [3] V. I. Paulsen and C. Y. Suen, Commutant representations of completely bounded maps, J. Operator Theory 13 (1985), 87-101. MR 768304 (86d:46052)
  • [4] C. Y. Suen, The numerical radius of a completely bounded map, Acta Math. Hungar. 59 (1992), 283-289. MR 1171734 (93f:46095)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L05, 47D25

Retrieve articles in all journals with MSC: 46L05, 47D25

Additional Information

Keywords: Completely positive map, completely bounded map, numerical radius
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society