Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Putnam's inequality for $ p$-hyponormal operators


Authors: Muneo Chō and Masuo Itoh
Journal: Proc. Amer. Math. Soc. 123 (1995), 2435-2440
MSC: Primary 47B20
MathSciNet review: 1246519
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this paper is to show the following: Let $ 0 < p < \frac{1}{2}$. If T is a p-hyponormal operator on a Hilbert space, then

$\displaystyle \left\Vert {{{({T^ \ast }T)}^p} - {{(T{T^ \ast })}^p}} \right\Vert \leq \frac{p}{\pi }\iint_{\sigma (T)} {{\rho ^{2p - 1}}d\rho d\theta }.$

That is, Putnam's inequality holds for p-hyponormal operators.

References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B20

Retrieve articles in all journals with MSC: 47B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1246519-3
Keywords: Hilbert space, hyponormal operator, Putnam's inequality
Article copyright: © Copyright 1995 American Mathematical Society