EMBEDDING THEOREMS
FOR RESIDUALLY ČERNIKOV CC-GROUPS

M. GONZÁLEZ AND J. OTAL

(Communicated by Ron Solomon)

Abstract. Embedding theorems for residually Černikov CC-groups are obtained, extending the corresponding results on FC-groups and improving some previous results on CC-groups.

1. Introduction

Groups with Černikov conjugacy classes, or CC-groups, were introduced by Polovickii [10, 11] as an extension of the concept of FC-groups. A group G is said to be a CC-group if $G/C_G(x^G)$ is a Černikov group for each $x \in G$. In the theory of FC-groups, a classical problem introduced by P. Hall [8] was embedding periodic FC-groups, a classical problem introduced by P. Hall [8] was embedding periodic FC-groups, a classical problem introduced by P. Hall [8] was embedding periodic FC-groups, a classical problem introduced by P. Hall [8] was embedding periodic FC-groups. In the theory of FC-groups, a classical problem introduced by P. Hall [8] was embedding periodic FC-groups. In the theory of FC-groups, a classical problem introduced by P. Hall [8] was embedding periodic FC-groups. In the theory of FC-groups, a classical problem introduced by P. Hall [8] was embedding periodic FC-groups. Since then, his work on periodic FC-groups has been continued in a sequence of papers, such as, for example, those of Gorčakov and Tomkinson (see [15] for a complete account of this subject). The main result in this line is the characterization of the periodic residually finite FC-groups as subgroups of centrally restricted products of finite groups.

The aim of this paper is to study the natural extension of embedding theory from FC-groups to CC-groups. There have been a few papers previously written on this subject. In [10], the first of these papers, the following result is presented: a countable periodic residually Černikov CC-group is a subgroup of a direct product of Černikov groups. In [1] Franciosi, de Giovanni and Tomkinson showed that a CC-group with trivial center (and so residually Černikov) is a subgroup of a direct product of Černikov groups. We improve this result in Theorem 5.7, where we obtain the same conclusion if the residually Černikov CC-group has countable center. Finally, in [4] it is proved that a countable periodic CC-group is a section of a direct product of CC-groups. Here (Theorem 4.2) we obtain an analogous result for periodic residually Černikov CC-groups of arbitrary cardinal. In Section 5, we obtain, mainly, embedding results for $G/Z(G)$ and G' and we prove (Theorem 5.7) that a periodic residually Černikov CC-group G with G', G/G' or $Z(G)$ countable is a subgroup of a direct product of Černikov groups.
In the following, we shall use Polovickiǐ's theorem characterization of CC-groups (Theorem 4.36 of [12]), which assures that, if G is a CC-group, then the normal closure x^G is Černikov-by-cyclic and $[G, x]$ is Černikov for every $x \in G$. Our group-theoretic notation is standard and is taken from [12] and [15]. We will refer by $\mathcal{H}(C \cup A_0)$ ($\mathcal{F}(C \cup A_0)$, resp.) to the class of (quotients of, resp.) subgroups of direct products of Černikov and torsion-free abelian groups. We extend Tomkinson's definition of centrally restricted product of finite groups (see [15], p. 29) to the centrally complete product of Černikov groups, denoted by Z^*_C, which is the subgroup of the cartesian product where every element has a finite number of noncentral components. Its torsion subgroup is, precisely, the centrally restricted product, denoted by $Z_r C$. A residual system of Černikov groups is a set of normal subgroups N_i of G with trivial intersection and such that G/N_i is a Černikov group for all $i \in I$. We denote it by $\{N_i : i \in I\}$.

2. Auxiliary results

In this section, we shall state some auxiliary results necessary for the following sections.

Lemma 2.1. (i) The classes of FC-groups and CC-groups are closed under the formations of centrally restricted or complete products.
(ii) Every abelian group is a Z^*_C-group.
(iii) $\mathcal{H}(C \cup A_0) \leq Z^*_C \leq \mathcal{F}(C \cup A_0)$.
(iv) $\mathcal{H} \subseteq Z_r C \subseteq \mathcal{F}(C \cup A_0)$.

Proof. The proof is an immediate consequence of the definitions. For (ii) and (iii), note that the additive group of the rational numbers is in the class Z^*_C, being a direct summand of the cartesian product of countably many copies of $C_p\infty$. □

Now, we are embedding a particularly simple class of groups, which contains the abelian groups.

Proposition 2.2. If G is a central-by-Černikov group, $G \in \mathcal{F}(C \cup A_0)$. Furthermore, if G is periodic, $G \in \mathcal{F}(C \cup A_0)$.

Proof. Let $Z = Z(G)$ so that G/Z is Černikov. It is easy to check that any abelian group is residually Černikov, and so Z is residually Černikov. Let $\{Z_i : i \in I\}$ be a Černikov residual system of Z. Each Z_i is a normal subgroup of G, and since G/Z and Z/Z_i are Černikov groups, so is G/Z_i. Therefore G is residually Černikov. Now, by Theorem 4.11 of [12], G' is Černikov. It is easy to see that there exists a normal subgroup N of G such that G/N is a Černikov group and $N \cap G' = 1$. Thus $G \leq (G/N) \times (G/G')$. Since G/G' is an abelian group, $G/G' \in \mathcal{H}(C \cup A_0)$, and so $G \in \mathcal{F}(C \cup A_0)$. □

The following result relates embeddings of certain subgroups with embeddings of the whole group.

Proposition 2.3. If H is a subgroup of the CC-group G such that $G = HZ$, with $Z = Z(G)$ one has

(i) H is residually Černikov if and only if G is residually Černikov;
(ii) $H \in Z^*_C$ if and only if $G \in Z^*_C$;
(iii) if G is periodic, $H \in Z_r C$ if and only if $G \in Z_r C$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof. Let us observe that the converses are evident, and that we can deduce (iii) from (ii). In order to prove (i), let \(\{H_i; i \in I\} \) be a Černikov residual system of \(H \). Since \(G = HZ \), \(H_i \) is a normal subgroup of \(G \). Thus, \(G \leq \prod \{G/Z_i; i \in I\} \). Since \(H/H_i \) is Černikov and \(ZH/H_i \) is central in \(G/H_i \), we can deduce that \(G/H_i \) is central by Černikov. By Proposition 2.2, \(G/H_i \) is residually Černikov, and therefore so is \(G \). In order to prove (ii), let us assume that \(H \in \text{Zr}^*C \). We deduce that there exists a Černikov residual system \(\{H_i; i \in I\} \) of \(H \) such that \(H \leq \text{Zr}^*(H/H_i) \). Since \(G = HZ \), each \(H_i \) is a normal subgroup of \(G \), and we can embed \(G \) into \(\prod \{G/Z_i; i \in I\} \). It is easy to see that \(G \leq \text{Zr}^*(G/H_i) \). As in (i) \(G/H_i \) is a central-by-Černikov group, and by Lemma 2.1 and Theorem 2.2, \(G/H_i \in \text{Zr}^*C \), and so \(G \in \text{Zr}^*C \). □

The next result shows that the periodicity is not an important hypothesis when considering centrally restricted products of Černikov groups.

Proposition 2.4. If \(G \in \text{Zr}^*C \), then \(G \) is isomorphic to a subgroup of the direct product of a \(\text{Zr}C \)-group and a torsion-free abelian group.

Proof. By hypothesis, \(G \leq \text{Zr}^*\{G_i; i \in I\} \), where \(G_i \) are Černikov groups. \(\text{Zr}^*G_i = ZD \), with \(Z = \prod \{Z(G_i); i \in I\} \) and \(D = \text{Dr}\{G_i; i \in I\} \). It is clear that we can assume \(G = ZD \). Thus \(Z = Z(G) \) and \(G/Z \) is a periodic group. Let \(V \) be a maximal torsion-free subgroup of \(Z \). Then \(Z/V \) is a periodic group, \(V \cap D = 1 \) and \(G \leq (G/V) \times (G/D) \). The abelian group \(G/D = ZD/D \) can be embedded into a torsion-free abelian group and a periodic abelian group, and the latter belongs to \(\mathcal{Z}C \) by Lemma 2.1. Since \(G/V = (Z/V)(DV/V) \), it is a central extension of the \(\text{ZrC} \)-group \(DV/V \cong D \). By Proposition 2.3, \(G/V \in \text{Zr}C \), and the result follows. □

The next result shows that there exist some aspects in the theory of embeddings of \(CC \)-groups that have a better behaviour than in the \(FC \)-case. It is known that the torsion subgroup of the abelian group \(\prod \{C_{p^n}; n \in N\} \) is not a subgroup of a direct product of finite groups (Example 2.6 of [15]). This is an example of a centrally restricted product of a countable number of finite groups which does not belong to the class \(\mathcal{F} \). The next theorem shows, however, that an analogous statement is true for \(CC \)-groups, though the problem is still open for an uncountable set of indices.

Theorem 2.5. If \(G \leq \text{Zr}^*\{G_n; n \in N\} \), with \(G_n \) Černikov, then

\[G \in \mathcal{F}(C \cup A_0) \]

Proof. Let us suppose first that \(G \) is periodic. Let \(T = T(\prod Z(G_n)) \) and \(D = \text{Dr}G_n \) such that \(G \leq \text{Zr}G_n = TD \). We can assume \(G = TD \). If \(T \) is countable, so is \(G \), and by Theorem 6 of [10] \(G \in \mathcal{F}C \). So let us assume that \(T \) is uncountable. \(T \) is abelian and periodic, so we can suppose \(T \leq \text{Dr}\{E_i; i \in I\} \), where \(E_i \) are Černikov groups and \(I \) is uncountable. Since \(D \) is countable, so is \(D \cap T \), and there exists a countable subset \(J \) of \(I \) such that \(D \cap T \leq \text{Dr}\{E_j; j \in J\} \). Let \(L = T \cap (\text{Dr}\{E_i; i \in I \setminus J\}) \). Thus, \(T/L \) is a countable group. Furthermore, \(L \leq G \) because \(L \leq T \leq Z(G) \) and \(L \cap D = L \cap T \cap D = 1 \). Then \(G \leq (G/L) \times (G/D) \). But \(G/D \) is a periodic abelian group, and so \(G/D \in \mathcal{F}C \). On the other hand, \(G/L = (T/L)(DL/L) \). Since \(DL/L \cong D \),
DL/L is a residually Černikov group, and by Proposition 2.3, so is G/L. But this group is countable and periodic, and so G/L ∈ ICC, and the theorem is proved if G is periodic. In the general case, we can suppose G = ZD, where Z = \[\prod Z(G_n)\]. Proceeding as in Proposition 2.4 and keeping the same notation, we obtain G ≤ (G/V) × (G/D), where G/D is abelian and G/V is a periodic group. Besides, G/V = (Z/V)(DV/V). Proceeding as in the proof of Proposition 2.3, G/V ≤ Zr*[F_n : n ∈ N], where F_n are periodic central-by-Černikov groups. The proof of Proposition 2.2 shows that F_n ≤ C_n × A_n, where C_n is Černikov and A_n is an abelian group. So G ≤ ZrC_n × \[\prod A_n × G/D\]. By the first part of the proof ZrC_n ∈ ICC, and so G ∈ ICC(C ∪ A_0).

The next result represents a crucial point in establishing the general embedding results. It extends from FC-groups, but the proof becomes more complicated and tedious by changing finite to Černikov.

Theorem 2.6. Let \(\rho \) be an ordinal limit. Let us assume that \(\{ N_\alpha : \alpha < \rho \} \) is a family of normal subgroups of the CC-group G such that \(\bigcap \{ N_\alpha : \alpha < \rho \} = 1 \), and let us call \(C_\alpha \) to \(C_G(G/N_\alpha) \). Let \(\{ H_\alpha : \alpha < \rho \} \) be an ascending chain of normal subgroups of G satisfying the following properties:

1. \([G, H_\alpha] ≤ N_\beta \), for all \(\beta ≥ \alpha \).
2. \(G = C_\alpha H_{\alpha+2} \), for all \(\alpha < \rho \).

Then \(G ≤ Zr*[G/N_\alpha : \alpha < \rho] \).

Proof. Since \(\{ N_\alpha : \alpha < \rho \} = 1 \), we can suppose that \(g ≤ \prod \{ G/N_\alpha : \alpha < \rho \} \). Let us assume that the theorem is false. Then there must exist an element \(x \in g \) with an infinite number of noncentral components. So, we can take an infinite number of ordinals \(\alpha_1 < \alpha_2 < \cdots < \alpha_n < \cdots \) such that \(x \) does not belong to \(C_{\alpha_n} \) for every \(n \). Since, by condition (ii), \([G, x]N_\alpha = [H_{\alpha+2}, x]N_\alpha \), it follows that \([H_{\alpha+2}, x] \) is not contained in \(N_{\alpha_n} \), for each \(n \). Now, by condition (i), \([H_{\alpha+2}, x] ≤ N_{\alpha_m} \) for all \(m ≥ n + 2 \), because it is clear that \(\alpha_{n+2} ≥ \alpha_n + 2 \) for all \(n \). Let us define \(M_n = \bigcap \{ N_\alpha : i ≥ n \} \). Thus we have an ascending chain \(M_1 ≤ M_2 ≤ \cdots ≤ M_n ≤ \cdots \) such that \([H_{\alpha+2}, x] ≤ [G, x] \cap M_{n+2} \) but \([H_{\alpha+2}, x] \) is not contained in \(M_n \). So, \([G, x] \cap M_2 < [G, x] \cap M_4 < \cdots < [G, x] \cap M_{2n} < \cdots \) is a strict ascending chain in \([G, x] \).

Since \([G, x] \) is a Černikov group, there must exist an \(m \) such that for \(n ≥ m \) the quotient \(([G, x] \cap M_{2n+2})/([G, x] \cap M_{2n}) \) is finite. Since \([H_{\alpha+2}, x] ≤ [G, x] \cap M_{2n+2} \), \([H_{\alpha+2}, x]/[H_{\alpha+2}, x] \cap M_{2n} \) is also finite. Now, \(M_{2n} ≤ N_{\alpha_{2n}} \), and thus, \([H_{\alpha+2}, x]/([H_{\alpha+2}, x] \cap N_{\alpha_{2n}}) \) is finite. This group is isomorphic to \([G, x]N_{\alpha_{2n}}/N_{\alpha_{2n}} \), and so the factors \([G, x]N_{\alpha_k}/N_{\alpha_k} \) are finite for \(k = 2m, 2m+2, \ldots \). Let \(\overline{G} \) be \(G/([N_{\alpha_k} : k = 2m, 2m+2, \ldots]) \), and let us denote by \(\overline{C} \) the image of any subset \(C \) of \(G \) under the canonical map. Thus \(\overline{G}, x] ≤ \prod \{ ([G, x]N_{\alpha_k}/N_{\alpha_k} : k ∈ N] \}. \) Since the factors of this cartesian product are finite, it follows that \(\overline{G}, x] \) is residually finite. Since \(\overline{G}, x] \) is Černikov, \(\overline{G}, x] \) must be finite. But for each natural number \(k \), there exists \(g_k ∈ H_{\alpha_k+2} \) such that \([g_k, x] \) does not belong to \(N_{\alpha_k} \). Since \([g_k, x] ∈ \{ N_{\alpha_j} : j > k \} \), we conclude that the elements \([g_k, x] \) are all different. This implies that \(\overline{G}, x] \) is infinite, which is a contradiction, and the result follows.

If \(G \) is an FC-group and \(N \) is a normal subgroup of \(G \) such that \(G/N \) is a finite group, there exists a finite subset \(X \) of \(G \) such that \(G = XG/N \). This
is not true if \(G/N \) is a Černikov factor of a \(CC \)-group (see, for example, a Prufer \(p \)-group). The next lemma is the solution of this problem that we need for our purposes.

Lemma 2.7. Let \(N \) be a normal subgroup of a \(CC \)-group \(G \) such that \(G/N \) is a Černikov group. If \(C/N = Z(G/N) \), then there exists a finite subset \(X \) of \(G \) such that \(G = CX^G \). (Observe that \(C = C_G(G/N) \)).

Proof. Let \(D/N \) be the radicable part of \(G/N \). Thus, \(G/N \) contains a finite subgroup \(S/N \) such that \(G = SD \). There exists a finite subset \(X \) of \(G \) such that \(S = \langle X \rangle N \), and therefore \(G = \langle X \rangle D \). Since \(D/N \) is radicable and \(S/N \) is finite, by Lemma 3.29.1 of [12], \(D/N = ([D, S]N/N)(C_{D/N}(S/N)) \leq [D, S]C/N \). Thus \(G = \langle X \rangle D = SC[D, S] \). But \([D, S] \leq NX^G\), and so \(G = CX^G \), and the proof is complete. \(\square \)

3. Residually Černikov \(CC \)-groups with \(G/Z(G) \) countable

Analogous to the classification of periodic residually finite \(FC \)-groups (cf. [5], [14], [15]) as subgroups of centrally restricted products of finite groups, we try to classify the residually Černikov \(CC \)-groups. The first step was done by Polovickii [10], who showed that a periodic residually Černikov group which is countable is a subgroup of a direct product of Černikov groups. In this section, we generalize this result to residually Černikov groups with \(G/Z(G) \) countable.

Theorem 3.1. If \(G \) is a residually Černikov \(CC \)-group with a countable residual system, then \(G \in Zr^*C \). Furthermore, if \(G \) is periodic, then \(G \in ZrC \).

Proof. Clearly, the second statement follows from the first. We know that \(G \leq \prod\{F_n : n \in N\} \), where \(F_n \) is a Černikov group for each \(n \). For each \(k \geq 1 \) let \(G_k := G \cap (\prod\{F_n : n > k\}) \). We construct by induction two chains of normal subgroups of \(G \), \(\{H_n : n \in N\} \) and \(\{M_n : n \in N\} \), satisfying the following conditions: (a) \(\{H_n : n \in N\} \) is an ascending chain, and \(H_n \) is the normal closure in \(G \) of a finite subset of \(G \). (b) For each \(n \geq 1 \), \(M_n = G_{s_n} \), where \(s_n \geq n \) and \(s_1 < s_2 < \cdots < s_n \). In particular, \(\{M_n : n \in N\} \) is a descending chain. (c) For every \(n > 1 \), \(G = H_nC_G(G/M_{n-1}) \). (d) For every \(n > 1 \), \(T(H_n) \cap M_n = 1 \). Let us define \(H_1 = 1 \), \(M_1 = G_1 \), and let us suppose that we have constructed \(n - 1 \) elements of both chains: \(H_1 \leq H_2 \leq \cdots \leq H_{n-1} \) and \(M_1 \geq M_2 \geq \cdots \geq M_{n-1} \). \(G/M_{n-1} \) is clearly a Černikov group, and so by Lemma 2.7, there exists a finite subset \(Y \) of \(G \) such that \(G = Y^GCG(G/M_{n-1}) \). By hypothesis, \(H_{n-1} = X^G \), for a finite subset \(X \) of \(G \). If we define \(H_n := \langle X \cup Y \rangle^G \), it is clear that (a) and (c) are satisfied. \(T(H_n) \) is a Černikov group, and since \(\{G_n : n \in N\} \) is a descending chain, there exists \(m \geq 1 \) such that \(T(H_n) \cap G_m \) is minimal. Thus \(T(H_n) \cap G_m = 1 \). Let us define \(s_n = \max\{m, n, s_{n-1} + 1\} \) and \(m_n = G_{s_n} \). Then, it is clear that conditions (b) and (d) hold, and our construction is complete. From (b) we have \(\bigcap\{M_n : n \geq 1\} = \bigcap\{G_n : n \geq 1\} = 1 \). Let us define \(N_0 = N_1 \) and \(N_i = M_{i+1}T(H_i) \), for \(i \geq 1 \). By Lemma 2.20 of [15], \(\bigcap\{N_i : i \geq 0\} = 1 \). For each \(k \in N \), \([G, H_k] \leq T(H_k) \) and \(T(H_k) \leq T(H_k) \) if \(r \geq k \). Thus \([G, H_k] \leq N_r, r \geq k \). Besides, by (c) \(H_{k+2}G(G/N_k) \geq H_{k+2}CG(G/M_{k+1}) = G \). By Theorem 2.6 \(G \) is isomorphic to a subgroup of the centrally complete product of the \(G/N_i \).
Since G/N_i is a quotient of $G/M_{i+1} = G/G_{i+1}$, G/N_i is Černikov, and the result follows. □

The following result extends Polovickii's theorem given in [10].

Corollary 3.2. Let G be a residually Černikov CC-group with $G/Z(G)$ countable. Then, $G \in \mathcal{B}(C \cup A_0)$. Furthermore, if G is periodic, $G \in \mathcal{B}C$.

Proof. The second sentence follows from the first. By hypothesis $G = HZ$, where H is normal in G and countable, and $Z = Z(G)$. So, $G' = H'$ is a countable subgroup of G. For each nonunit element $x \in G'$, there exists a normal subgroup N_x of G with G/N_x a Černikov group and $x \notin N_x$. So, if $N = \bigcap\{N_x : 1 \neq x \in G'\}$, $N \cap G' = 1$. Then, $G \leq (G/G') \times (G/N)$. But $(G/G') \in \mathcal{B}(C \cup A_0)$ and $\{N_x/N : 1 \neq x \in G'\}$ is a countable residual system for the CC-group G/N. By Theorem 3.1, $G/N \in ZrC$, with a countable number of components and, by Theorem 2.5, $G/N \in \mathcal{B}(C \cup A_0)$, and the proof is complete. □

4. Residually Černikov CC-groups as sections

Gorčakov [5] showed that periodic residually finite FC-groups are sections of direct products of finite groups. Later, this result was a consequence of the complete characterization of the periodic residually finite FC-groups as the subgroups of centrally restricted products of finite groups due to Tomkinson [14]. To date, an analogous characterization has not been obtained for CC-groups. In this section we extend Gorčakov's result, showing that residually Černikov CC-groups are sections of direct products of Černikov and torsion-free abelian groups. In Example 2.4 of [4] there is an example of a CC-group with $G/Z(G)$ non-periodic, and so it is not a section of this type. So, there are CC-groups that are not in the class $\mathcal{B}(C \cup A_0)$, and this shows that the hypothesis of residually Černikov cannot be omitted. On the other hand, an infinite countable extra special p-group (see p. 49 of [15]) is $\mathcal{B}DF$ but it is not residually Černikov. Thus, the classification that we shall obtain in this section is not a characterization because a $\mathcal{B}(C \cup A_0)$-group is not always residually Černikov. The next result represents the induction step, and its proof is very close to the corresponding theorem of [5].

Theorem 4.1. Let G be a CC-group subgroup of the cartesian product

$$\prod\{F_i : i \in I\}$$

of an uncountable number of Černikov groups F_i. Then G can be embedded as a subgroup of a centrally complete product of CC-groups with cardinal strictly less than $|I|$. Furthermore, if G is periodic, the embedding can be performed in a centrally restricted product.

Now we are able to establish our main result of this section.

Theorem 4.2. A residually Černikov CC-group is in the class $\mathcal{B}(C \cup A_0)$. Furthermore, if G is periodic, G is a $\mathcal{B}C$-group.

Proof. The second statement follows immediately from the first. Let us suppose that $G \leq \prod\{F_i : i \in I\}$, with $|I| \leq |G|$. If I is countable, the result follows.
from Corollary 3.2. Let us suppose that $|I|$ is uncountable. By Theorem 4.1, there exists a family $\{G_j: j \in J\}$ of CC-groups with $|G_j| < |I|$ for all j, and such that $G \leq Zr^*G_j$. We can assume that $G_j = G/K_j$ for all $j \in J$, and thus, $G = H_jK_j$ with H_j normal in G and $|H_j| < |I|$. H_j is residually Černikov, and so, by induction $H_j \in \mathcal{C}(C \cup A_0)$. Then, Lemma 2.1 implies that $G_j \in \mathcal{C}(C \cup A_0)$. Let $Z = \prod Z(G_j)$ and $D = DrG_j$ such that $G \leq Zr^*G_j = ZD$. Then $D \in \mathcal{C}(C \cup A_0)$ and so $G \in \mathcal{C}(C \cup A_0)$.

Corollary 4.3. If G is a CC-group, $G/Z(G) \in \mathcal{C}(C \cup A_0)$. If G is periodic, then $G/Z(G) \in \mathcal{C}C$.

Proof. It is a consequence of Theorem 4.2. \square

Another traditional step in FC-group theory has been embedding the derived group G' of an FC-group G. Tomkinson [13] has shown that $G' \in \mathcal{C}F$, for any FC-group G. Using Theorem 3.1 of [4], we can prove an analogous theorem for CC-groups. The proof is very close to that of Theorem 3.6 of [15].

Theorem 4.4. If G is a CC-group, then $g' \in \mathcal{C}C$.

We finish this section with some arithmetical properties.

Theorem 4.5. If G is an infinite residually Černikov CC-group, then $|G| = |G'||Z(G)|$.

Proof. Proceeding as in Corollary 3.2, $G/N \leq \prod\{G/N_x: 1 \neq x \in G'\}$ with $N = \bigcap\{N_x: 1 \neq x \in G'\}$. If $x \in N$, then $[G, x] \leq N \cap G' = 1$, and so $x \in Z = Z(G)$. Then it is easy to see that $Z(G/N) = Z/N$, and by Lemma 6.3 of [9] $|G/Z| \leq \max\{n_0, |G'|\}$. So, $|G| = |G/Z||Z| \leq n_0|G'||Z|$, and we have equality because G is infinite. Thus, if G' or $Z(G)$ is infinite, the result follows. Otherwise, there exists a normal subgroup K of G with G/K a Černikov group and $K \cap Z \cap G' = 1$. So $K = 1$ and G is Černikov. By Theorem 4.35 of [12], G is an FC-group and so is central by finite. Consequently, G is finite, which is a contradiction, and the proof is complete. \square

The result above is false if the group is not residually as shows any infinite extra special p-group.

Corollary 4.6. If G is a CC-group with $G/Z(G)$ infinite, then $|G| = |G'||Z_2(G)|$.

Proof. It follows from Theorem 4.5. \square

5. Some particular cases of embedding

We show in this section some special cases in which a residually Černikov CC-group can be embedded into a direct product of Černikov and abelian groups. Most of these results are, in the FC-case, consequences of the characterization of residually finite periodic FC-groups given by Tomkinson [14]. First, we present some results which are adaptations of some Gorčakov theorems (see Gorčakov [7] and Theorems 2.2, 2.3, 2.4 of [15]). Since our proofs are very similar to those given there, we just state them. We shall denote by $\pi_J(D_r\{H_i: i \in I\})$ the projection from $D_r\{H_i: i \in I\}$ to $D_r\{H_i: i \in J\}$ for a set of groups $\{H_i: i \in I\}$ and where J is contained in I.

Lemma 5.1. Let G be such that $G \leq \text{Dr}\{H_i : i \in I\}$, where the H_i are groups such that $|H_i| < \kappa$ for all $i \in I$, and where κ is a fixed uncountable cardinal. Then, the index set I can be seen as a union of an ascending chain of subsets $I(\alpha)$, $\alpha < \rho$, ρ being the least ordinal of cardinality $|I|$, such that the following conditions are satisfied. (a) For each α, $J(\alpha) = I(\alpha) - I(\alpha)$ has cardinality strictly less than κ. (b) If $J \subseteq I(\alpha)$ is finite, then $\text{Dr}_J(G) = \text{Dr}_J(G \cap \text{Dr}\{H_i : i \in I(\alpha)\})$.

Lemma 5.2. Let G be such that $G \leq \text{Dr}\{H_i : i \in I\}$, where the H_i are groups such that $|H_i| < \kappa$ for all $i \in I$ and where κ is an uncountable given cardinal. Then G' is a direct product of normal subgroups of G which have cardinality strictly less than κ.

As consequences of Lemma 5.1 we can state (see Theorem 2.4 of [15]).

Theorem 5.3. If $G \in \mathfrak{I}(C \cup A_0)$, then $G/Z(G) \in \mathfrak{I}C$.

Corollary 5.4. If G is a residually Černikov CC-group, then $G/Z(G) \in \mathfrak{I}C$. So, if G is a CC-group, $G/Z_n(G) \in \mathfrak{I}C$ for $n \geq 2$.

Now we use these previous results to state the more important cases of embedding.

Theorem 5.5. If G is a residually Černikov CC-group, $G' \in \mathfrak{I}C$.

Proof. We will proceed by induction on $|G|$. If G is countable, by Corollary 3.2, $G \in \mathfrak{I}(C \cup A_0)$, and since G' is periodic, $G' \in \mathfrak{I}C$. If G is uncountable, by Theorem 4.1 we have $G \leq \text{Zr}\{G_i : i \in I\}$ with $|I| = |G|$ and G_i is a CC-group with $|G_i| < |G|$. Let $Z = \prod_i Z(G_i)$ and $D = \text{Dr}\{G_i : i \in I\}$. Then $G \leq ZD$. Thus, $G' = (GZ)'$, and since $GZ = (GZ \cap D)Z$, we conclude $G' = (GZ \cap D)'$. By Lemma 5.2 $(GZ \cap D)' = \text{Dr}\{H_j : j \in J\}$, where H_j are normal subgroups of $GZ \cap D$ and $|H_j| < |G|$ for all $j \in J$. For each $j \in J$, since $H_j \leq G'$, there exists $K_j \leq G$ such that $H_j \leq K_j' \leq K_j$ and $|K_j'| < |G|$. By induction, $K_j' \in \mathfrak{I}C$, and so $H_j \in \mathfrak{I}C$. Thus, $G' \in \mathfrak{I}C$, and the proof is complete. □

Corollary 5.6. If G is a CC-group, $G'Z(G)/Z(G) \in \mathfrak{I}C$.

Proof. It is a consequence of Theorem 5.5. □

Theorem 5.7. Let G be a residually Černikov CC-group. If G', G/G' or $Z(G)$ are countable, then $G \in \mathfrak{I}(C \cup A_0)$. Furthermore, if G is periodic, $G \in \mathfrak{I}C$.

Proof. If G' or $Z(G)$ are countable, proceeding as in Corollary 3.2 and applying Corollary 5.4, we conclude that $G \in \mathfrak{I}(C \cup A_0)$. If G/G' is countable, we prove the result by induction, as in Theorem 5.5. Using the same notation, $G' = \text{Dr}\{H_j : j \in J\}$, where H_j are normal subgroups of $GZ \cap D$ and $|H_j| < |G|$ for all $j \in J$. In fact, $H_j \leq G$, H_j are normal subgroups of $(GZ \cap D)Z = GZ$, and so the subgroups H_j are also normal in G. Since G/G' is a countable group, there exists a countable normal subgroup C of G such that $G = CG'$. But $C \cap G'$ is also countable, and so there exists a countable subset $J_0 \subseteq J$ with $C \cap G' = H \leq \text{Dr}\{H_j : j \in J_0\}$. Clearly, H is normal in G and, since we are supposing that G is uncountable, $|H| < |G|$. Let $K =: \text{Dr}\{H_j : j \in J - J_0\}$ and $E = CH$. Thus, $|E| < |G|$. Then, $E \cap K = CH \cap G' \cap K = (C \cap G') \cap K = H \cap K = 1$ and, since $G = EK$, we obtain $G = E \times K$. Therefore, $(G/G') = (E/E') \times (K/K')$, and so E/E' and
K/K' are countable. By induction, E and K are $\mathcal{H}(C \cup A_0)$-groups, and so is G. The second part of the theorem is a consequence of the first, and our result follows. □

In this previous theorem, we showed that a residually Černikov CC-group with $Z(G)$ countable belongs to the class $\mathcal{H}(C \cup A_0)$. The analogous problem is still unsolved in the FC-case, that is to say, it is unknown if every periodic residually finite FC-group with countable center is in the class $\mathcal{H}F$. The next result gives a partial answer to this problem.

Theorem 5.8. Let G be a periodic and residually finite FC-group with countable center $Z(G) = Z$. Then G is isomorphic to a subgroup of a direct product of groups which are all finite except for countably many of them, which are Černikov central by finite groups.

Proof. We can suppose that $G \leq (G/Z) \times (G/N)$, where G/N is a periodic FC-group with a countable residual system of finite groups. By Corollary 2.26 of [15], $G/Z \in \mathcal{H}F$. Tomkinson (Theorem 2.24 of [15]) also showed that G/N is a subgroup of a centrally restricted product of a countable number of finite groups. Proceeding as in Theorem 2.5, we can prove that $G/N \leq Dr\{A_i : i \in I\} \times Dr\{C_n : n \geq 1\}$, with A_i Černikov abelian groups and C_n Černikov FC-groups. So, we have $G \leq Dr\{F_j : j \in J\} \times Dr\{A_i : i \in I\} \times Dr\{C_n : n \geq 1\}$ with F_j finite groups. Let $A := Dr\{A_i : i \in I\}$. Clearly, $G \cap A \leq Z$. Since Z is countable, $I_0 = \text{supp}(G \cap A)$ is also countable, but $G \cap (Dr\{A_i : i \in I - I_0\}) = 1$ which implies that $G \leq Dr\{F_j : j \in J\} \times Dr\{A_i : i \in I_0\} \times Dr\{C_n : n \geq 1\}$, and the result follows. □

Acknowledgments

This research has been supported by DGICYT (Spain) PS88-0085. The contents of this paper form part of the Ph. D. dissertation of the first author carried out under the supervision of the second one. Both authors wish to thank Dr. J. M. Peña and M. J. Tomkinson for their valuable comments.

References

Fac de Ciencias, Math., University of Zaragoza, 50009 Zaragoza, Spain
E-mail address: otal@cc.unizar.es