Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Criterion for the resolvent set of nonsymmetric tridiagonal operators


Authors: A. I. Aptekarev, V. Kaliaguine and W. Van Assche
Journal: Proc. Amer. Math. Soc. 123 (1995), 2423-2430
MSC: Primary 47B37; Secondary 41A21, 47A05, 47B39
DOI: https://doi.org/10.1090/S0002-9939-1995-1254830-5
MathSciNet review: 1254830
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study nonsymmetric tridiagonal operators acting in the Hilbert space $ {\ell ^2}$ and describe the spectrum and the resolvent set of such operators in terms of a continued fraction related to the resolvent. In this way we establish a connection between Padé approximants and spectral properties of nonsymmetric tridiagonal operators.


References [Enhancements On Off] (What's this?)

  • [1] N. I. Akhiezer, The classical moment problem, Fizmatgiz, Moscow, 1961; English transl., Oliver and Boyd, Edinburgh.
  • [2] N. I. Akhiezer and I. M. Glazman, Theory of linear operators in Hilbert space, Nauka, Moscow, 1966; English transl., Pitman, Boston.
  • [3] A. I. Aptekarev, Asymptotic properties of polynomials orthogonal on a system of contours and periodic motions of Toda lattices, Mat. Sb. 125 (167) (1984), 231-258; English transl., Math. USSR-Sb. 53 (1986), 233-260. MR 764479 (86g:35166)
  • [4] A. I. Aptekarev and E. M. Nikishin, The scattering problem for a discrete Sturm-Liouville operator, Mat. Sb. 121 (163) (1983), 327-358; English transl., Math. USSR-Sb. 49 (1984), 325-355. MR 708000 (85d:39004)
  • [5] S. Demko, W. F. Moss, and P. W. Smith, Decay rates for the inverse of band matrices, Math. Comp. 43 (1984), 491-499. MR 758197 (85m:15002)
  • [6] J.S. Geronimo and K.M. Case, Scattering theory and polynomials orthogonal on the real line, Trans. Amer. Math. Soc. 258 (1980), 467-494. MR 558185 (82c:81138)
  • [7] J.S. Geronimo and W. Van Assche, Orthogonal polynomials with asymptotically periodic recurrence coefficients, J. Approx. Theory 46 (1986), 251-283. MR 840395 (87i:42035)
  • [8] W.B. Jones and W.J. Thron, Continued fractions: Analytic theory and applications, Encyclopedia Math. Appl., vol. 11, Addison-Wesley, Reading, MA, and Cambridge Univ. Press, Cambridge, 1980. MR 595864 (82c:30001)
  • [9] M.A. Krasnoselskiĭ and M.G. Krein, Fundamental theorems on the extension of Hermitian operators and certain of their applications to the theory of orthogonal polynomials and the problem of moments, Uspekhi Mat. Nauk 2(19) (1947), no. 3, 60-106. (Russian) MR 0026759 (10:198b)
  • [10] E.M. Nikishin, Discrete Sturm-Liouville operators and some problems of function theory, Trudy Sem. Petrovsk. 10 (1984), 3-77; English transl., J. Soviet Math. 35 (1986), 2679-2744. MR 778879 (86h:39007)
  • [11] E.M. Nikishin and V.N. Sorokin, Rational approximations and orthogonality, Nauka, Moscow, 1988; English transl., Transl. Math. Monographs, vol. 92, Amer. Math. Soc., Providence, RI. MR 953788 (89m:30079)
  • [12] W. Van Assche, Asymptotics for orthogonal polynomials and three-term recurrences, Orthogonal Polynomials: Theory and Practice (P. Nevai, ed.), NATO-Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 294, Kluwer Academic Publishers, Dordrecht, 1990, pp. 435-462. MR 1100305 (92k:42038)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B37, 41A21, 47A05, 47B39

Retrieve articles in all journals with MSC: 47B37, 41A21, 47A05, 47B39


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1995-1254830-5
Keywords: Tridiagonal operators, resolvents, Padé approximation
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society